
A grammar language based on S-expressions

Lucas Vieira∗

August 25, 2019

ABSTRACT

cl-jackc1 is an implementation of a compiler for the Jack programming
language. It uses its own grammar engine for language grammars, written
from scratch in Common Lisp. This article outlines the domain-specific
language for specifying grammar rules, its key points, and my experience on
building the matching engine which interprets the grammar language.

1 Introduction
Building programming languages is often an arduous, but fun task. Some of
the work lies on designing the language and its syntactical elements. The
rest of the work lies on building the tools to make the language work, namely
the compiler toolchain. In this article, I discuss a fragment of the compiler
toolchain for the Jack programming language, one of the projects proposed
by [2], which is the parser for the syntax analysis of the Jack programming
language.

The related book provides a very clear grammar for Jack, and so the job
of the reader is to simply write a compiler for the language, in two different
projects2. Here I show some of my strategies to build the first of the projects,
despite having zero experience on writing compilers.

Nisan and Schocken [2] provide a blueprint for the project software
architecture in the Java language, so that the job of the reader is sped up.
This model, however, obeys certain principles of object-oriented design which
describe a very rigid software architecture. Due to influence of [1], when
primarily thinking of what to do, I did not view the compiler architecture
as a monolithic hierarchy of software modules, interacting with each other.
Though the modularization is still maintained, mostly for file organization

∗lucasvieira@protonmail.com
1https://github.com/luksamuk/cl-jackc
2The compiler is actually built in more than two projects, as the rest of the toolchain

(Assembler and VM Translator) is built in chapters prior to the compiler-related chapters.

1

https://github.com/luksamuk/cl-jackc


and for keeping some degree of similarity with the proposed implementation,
the syntax analyzer was primarily designed as layers of software comprising of
certain abstractions, as if each of these layers were domain-specific languages
themselves that could be used to build upper abstraction layers.

This approach led me to build a de-facto domain-specific language to
represent the grammar of the Jack programming language in the topmost
level. It also acquired the intended effect of having an underlying robust,
simple and well-organized codebase. The formalisms and operation of this
topmost grammar language are detailed as follows.

2 Grammars
According to [3], a grammar is a formalism originally conceived for defining
formal languages. The fundamental elements of grammars are the rules,
which demonstrate how to generate a language’s words.

Let there be a grammar G, which is a tuple (V,Σ, R, P ) where:

• V is a finite set of all language variables;

• Σ is the language’s alphabet, where V ∩ Σ = ∅;

• R is a finite set comprised of ordered pairs known as rules, and

• P ∈ V is a variable known as a starting point.

A grammar G is valid when it is possible to generate sentential forms
from its rules, such that these forms are not populated by any variable, but
only with terminals (α ∈ Σ). These special forms are often called words.The
set of all words generated by a grammar is called L(G), or language of G.

It is said that a word ω belongs to L(G) if, and only if, ω can be derived
in n steps from G’s rules.

The rules of a grammar, as already stated, are ordered pairs. The first
element of the pair states what should be replaced, and the second element
states what is the replacement. For example, consider the following rules.

A → aA (1)
A → B (2)
B → λ (3)

These rules belong to a certain type of grammar which will be crucial to
the incoming object of discussion. Given a starting point A, as per Rule 1,
it is possible to infer that this language is capable of generating sentential
forms with an arbitrary number of "a" terminals, plus a dangling "A" variable
at the end. After that, A can be transformed into B (Rule 2), and B is

2



then transformed into the empty word λ (Rule 3), which acts as the stopping
point for grammar generation, leaving only a sentential form comprised of
terminals (a word). This language may also be represented as {a}∗.

The previous example is interesting because the left-hand part of all rules
is comprised only of variables. This means that, for any given variable which
may appear in a sentential form, that single variable must have one or more
corresponding rules which replace it. Furthermore, it is only necessary to
find and replace variables in the sentential form, and never to analyze the
disposition of terminals, since there are no rules requiring this procedure.

A grammar for the Jack language (see [2]) is written using exactly this
model. Each of the rules are a simple pair, where the first component is
a variable which may appear anywhere, and so it can be transformed by
another given rule of the grammar. Using this simple theorem, it is possible
to write an application which takes a source code and parses it, so that this
analysis indicates whether the code is a word of the Jack language or not.

3 Compiler’s grammar syntax
The compiler’s grammar language is written using s-expressions, since the
application itself is written in Common Lisp. The chosen language provides
powerful abstractions for dealing with lists. The grammar is written as an
abstract syntax tree, so that Lisp makes it easier to traverse each rule.

A grammar is a list of rules. Each rule is a pair of two elements: a name
and a match. There must be at least one rule enumerating terminals, which
are expected textual elements.

Names are Lisp keywords3, and therefore are prepended with a double
colon, so that they are agnostic to the namespace4 they’re in.

Figure 1 is a transcribed fragment of a single rule for matching with a
class structure of the Jack programming language. The rule is provided for
illustrative purposes.

(:class ((:keyword "class") :class-name (:symbol "{")
(:many :class-var-dec)
(:many :subroutine-dec)
(:symbol "}")))

Figure 1: Rule for matching a class definition in the Jack language.

3This choice was made due to Common Lisp’s structure regarding packages, which are
analogous to C libraries in some ways. A Lisp KEYWORD is agnostic to context, as it belongs
to its own package, whereas the next obvious choice (an unqualified Lisp SYMBOL) is not.

4For better understanding, the word namespace was used, though not technically correct
from Common Lisp’s point of view.

3



The match component of a rule is, in itself, a list, and so it carries its own
meaning. The match may be populated by other keyword names, quantified
rules, precise rules and exact-matches, which must also be specified in the
grammar itself.

Any valid Jack source code begins with a class definition, and so :CLASS
corresponds to the starting point for the matching engine. The code snippet
at Figure 1 offers a way to expect a class definition in the Jack programming
language (adapted from [2]). To recognize a class, the grammar expects the
match of a precise pattern, in the following order:

• An exact match with the keyword "class";

• The class’s name, whatever it may be;

• An exact match with the symbol {;

• Zero or more variable declarations, whatever it may be;

• Zero or more subroutine declarations, whatever it may be;

• An exact match with the symbol }.

The matching engine works recursively, as it is suggested from the wishful
thinking approach (see [1]). These operations (as well as the match portion
of the rule itself) require better clarification of their underlying structure.

A valid grammar, when written in the grammar language, is comprised
of atomic rules, which enumerate most primitives, and of compound rules,
which enumerate a single kind of primitive and some means of combination
for the rest of the rules.

Atomic rules

A rule is atomic if it is comprised of a single keyword. These rules are of the
same type of the rule names, as they are meant to be replaced by the body
of another rule by the matching engine.

There are also built-in atomic rules which do not need to appear on the
grammar, since they are primitive to the matching engine, and so they are
enumerated as follows:

• :IDENTIFIER: Any name which does not start with a letter. Breaks
before a :SYMBOL or any whitespace.

• :STRING-CONSTANT: Any text surrounded with quotes. Cannot have
any line breaks.

• :INTEGER-CONSTANT: Any text comprised only of numbers and no
:SYMBOL terminals.

4



• Terminals: Any text. The text can be written as a string constant for
Lisp.

Since matching these rules require knowledge of what a :SYMBOL and a
:KEYWORD are, these rules must always be defined for any grammar. They
can also be compared to the alphabet Σ of a formal grammar (see [3]). This
aspect will be discussed later, in greater detail.

In a rule such as (:KEYWORD "class"), the element "class" is a terminal,
as it is raw text expected to be at the matching source code position. However,
the rule as a whole is not atomic, as will be further discussed in the following
subsection.

Compound rules

Any list in the match element is a compound rule. Since the match element
itself is a list comprised of several sub-rules, it is also considered as a
compound rule, in accordance to one of the following archetypes.

Quantified rules

A compound rule is a quantified rule when its first element is a quantifier
keyword. The quantifier changes the matching engine context for the elements
it encloses, following the meaning of the quantifier keywords:

• :OR: A disjunction of rules. Attempts to match, in order, each of the
sub-rules it encloses. Stops when one of the rules is matched, and does
not check for the remaining rules.

• :MAYBE: Attempts to sequentially match the group of all enclosed sub-
rules, but the matching is optional; failure on the matching process
does not fail the rest of the grammar match (zero-or-one).

• :MANY: Attempts to match the group of all enclosed sub-rules exhaus-
tively, and keeps collecting the matching results until the repeating
match fails (zero-or-more).

A quantified rule such as (:many :identifier), for example, will keep
collecting identifiers until there are no more identifiers to be collected. When
matching an identifier fails, then all previously matched identifiers are col-
lected. If no identifier was matched, the match results in a neutral value,
but never fails.

A rule such as (:maybe :identifier :integer-constant) will attempt
to match an identifier and then an integer constant. If any of those structures
are not matched, then the match results in a neutral value, but never fails.

The rule (:or :identifier :integer-constant) attempts to match
an identifier. If the identifier is not found, it attempts to match an integer

5



constant. If the integer constant is also not found, then the match results in
failure.

Exact-matches

A compound rule is an exact-match rule when comprised of two elements,
where its first element is an existing rule in the grammar, and the second
element is an expected terminal.

The terminal element of an exact-match rule must belong to a disjunctively-
quantified rule, where each element of the disjunction is a terminal text as
well. This associated, disjunctive rule is not supposed to be used in matching
time, though it is important for grammar verification.

Any exact-match rule which uses a non-existing disjunctive rule, or uses
a terminal which does not belong to the associated disjunctive rule, is
considered to be syntactically incorrect.

A rule such as (:KEYWORD "class") is a well-defined exact-match rule,
if and only if the grammar contains a rule as exemplified in Figure 2.

(:KEYWORD ((:OR "class" "constructor" "function" ...)))

Figure 2: Example of a supporting rule for an exact-match rule.

Precise rules

A precise rule is the commonest type of rule, as the match element of a rule
definition often falls into it. Moreover, any non-disjunctively quantified rule
ends up degenerating into a precise rule, only changing the context where
such precise rule fails.

Any part of a match element of a rule, which is also compound, but does
not fall into the previous categories, is a precise rule. In other words, such
rules are surrounded by parenthesis, but their first element is not a quantifier,
and they also do not fit the exact-match rule specification.

These compound rules are basically enclosings for sub-rules which must
"travel" as a group, and so all of their sub-rules must always match. Since a
rule definition enumerates how it works, it is advised that any match portion
of a rule definition should be a precise rule itself.

A rule such as (:IDENTIFIER (:SYMBOL "=") :INTEGER-CONSTANT) is
a valid precise rule. The grammar expects three sub-rules to be matched
sequentially. Should any of them fail, then the whole group fails.

Obligatory rules

As the matching engine was implemented, it was discovered that the structure
needed to assume that certain rules were to be always expected. These

6



obligatory rules, however, are lexical elements which are common to most
languages.

• :KEYWORD: A disjunctively-quantified rule enumerating all text termi-
nals of the language which are language keywords.

• :SYMBOL: A disjunctively-quantified rule enumerationg all text termi-
nals of the language which are language symbols.

• :ENTRY: A special rule determining the entry point for the grammar;
in other words, where the parsing should start.

Keywords and symbols enumerate nothing less than the alphabet Σ of a
language, and therefore act as the primary terminals for any other grammar
rules. As for the entry, it is the entry-point variable for any language.

Figure 3 is a snippet showing the Jack language’s keywords, symbols and
entry, based on the language’s grammar specification (see [2], pages 208-209).

(:keyword ((:or "class" "constructor" "function"
"method" "field" "static" "var"
"int" "char" "boolean" "void"
"true" "false" "null" "this" "let"
"do" "if" "else" "while" "return")))

(:symbol ((:or "{" "}" "(" ")" "[" "]" "." ","
";" "+" "-" "*" "/" "&" "|" "<"
">" "=" "~")))

(:entry :class) ; every file contains a single class

Figure 3: Keywords and symbols as defined for the Jack language.

Optional rules

There are two special meta-rules which affect the tokenization phase and the
cleanup of the abstract syntax tree phase, respectively.

The :COMMENT rule determines pairs of delimiters for comments on the
language. It is a disjunctively-quantified rule, where each element of the
disjunction is a list of one or two strings. The first string must be a comment-
opening token; the second one closes the comment opened by the first one. If
the second string is absent, the grammar presumes that a newline character
ends the comment.

The :PHONY rule determines rules which should not be embedded on the
abstract syntax tree, when it is generated. Any rule name stated in this form

7



will be stripped from the abstract syntax tree, sans its nesting. The :PHONY
rule nesting is also irrelevant, as its value is flattened by default.

Figure 4 highlights the comment tokens and the phony rules of Jack
language’s grammar. Notice that one of the tokens is a line comment, which
ends with a newline indicator.

(:comment ((:or ("//") ("/*" "*/"))))

(:phony ((:statement
:subroutine-call
:class-name
:subroutine-name
:type
:var-name
:op
:keyword-constant
:unary-op)))

Figure 4: Comment tokens and phony rules as defined for the Jack language.

4 Rule composition
The grammar language fundamentals have been outlined. Terminals, exact-
matches and built-in rules act as primitives, while other compound rules
act as means of combination. At this point it is important to discuss the
language’s means of abstraction.

Abstraction implies the building of structures which would allow the
creation of the rules themselves. Figure 1 already hints at what is possible
to make of the grammar language. For a better understanding, we should
take a simpler example, as described in Figure 5.

(:var-decl (:type
:identifier
(:maybe (:symbol "=")

:integer-constant)
(:symbol ";")))

(:type ((:or (:keyword "int")
(:keyword "char")
(:keyword "bool"))))

(:var-decls ((:many :var-decl)))

(:entry :var-decls)

8



Figure 5: Rule example for matching a variable declaration.

The example outlined in Figure 5 is by no means practical, since there
are more sophisticated ways of matching a variable declaration, but it should
be enough for a brief explanation. Additionally, the obligatory :SYMBOL and
:KEYWORD rules were omitted, as they are potentially deducible by context.

Suppose that the compiler reads a file which may contain many variable
declarations, as exemplified in Figure 6. We begin by attempting to match
the rule :VAR-DECLS.

int foo = 5;
char downcase_a = 97;
bool false_val = 0;
float this_fails = 3;

Figure 6: Example of a potential input file for the matching engine.

The file will fail a match for a :VAR-DECL in line 4, since the :TYPE rule
will not match the keyword "float". It will, however, not fail the entirety
of the match process, giving the results of the first three lines. This happens
due to the :MANY quantifier.

Since this quantifier is enclosed in a precise match context, in the definition
of :VAR-DECLS, if no :VAR-DECL were matched, the whole match process
would fail, and raise a condition in the matching engine.

For the example given at Figure 6, the match process would not fail with
a syntax error. This is an undesided grammar runtime bug. The programmer
could mitigate this problem with a terminal after the quantified variable
declarations.

5 Conclusion
Grammar engines are certainly of great interest when designing a language,
and so they often shape the way languages work to ensure that the syntax
analysis of said language can be done by such an engine. They also yield
seemingly simple structures when implemented, which guarantees easier
debugging.

The time I spent building the matching engine was satisfactory, and
ended up producing the discussed grammar language due to the way my
compiler’s syntax analysis was designed. The language was first though
on paper, then carefully modified so that a comprehensive matcher could
operate on it.

9



The matching engine itself is comprised of two relevant parts: a tokenizer
and a matcher, which were not discussed in this article. But they were
implemented as layers of software, such that the tokenizer was a foundation
for matching the built-in rules and specific text strings; the matcher was
the middle layer which could interpret the grammar language, and then the
language itself comes on top.

This structure ended up being very interesting, because the software itself
is now robust, and not necessarily specific to the Jack programming language.
Further exploration can be made to make it work with other languages, and
maybe even to analyze itself. I intend to soon attempt to build a Lisp dialect
by just swapping the rule set of this matching engine. Performing this new
experiment would lay the foundation to one of my future projects.

References
[1] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation

of Computer Programs. MIT Press, 1996.

[2] N. Nisan and S. Schocken. The Elements of Computing Systems. MIT
Press, 2008.

[3] N. J. Vieira. Introdução aos Fundamentos da Computação. Cengage
Learning, 2006.

10


	Introduction
	Grammars
	Compiler's grammar syntax
	Rule composition
	Conclusion

