Lucas S. Vieira

Believe

A Bel interpreter built in C
Version 0.3 (Alpha)

April 18, 2021

Acknowledgements

1 Introduction

1.1
1.2

1.3

1.4
On-the-fly checklist
2 Tools and scripts
%é Memory leak testing

About literate programming
Licensing
Textbook license
Codelicense
Contribution guidelines
Code contribution guidelines
Project communication guidelines
Backlog
Roadmap

Makefile

Tangling
2.4 Running the program

3 Libraries and headers

3.1 Fileheader
3.2 - Software-related definitions
3.3 Defaultheaders

3.4 Boehm-Demers-Weiser Garbage Collector

4 Fundamental data types

Enumerating Bel types
Pair . . 0. L.
Character
Symbol
Stream

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Contents

CONTENTS

CONTENTS

5 Essential structures and manipulation of data
Basic definitions
Forward declarations
Predicates

5.1

5.2

5.3
54
5.5
5.6

5.7

5.8

numberpo o
idp . . . o
ETYOTP + v v v v e e e e e e
proper—-list-p
stringpo oo

literalp

primitivep

closurep

quotepo
number-list-p
Symbol Table and Symbols
Pairs oo
Characters and Strings
Streams
Stream manipulation safety
Numbers.
Number generation
Number arithmetic
Errors

6 Axioms

6.1
6.2
6.3

6.4

Variables and constants
List of all characters

Environment

Types and hierarchy of environments
Environment extension and capturing
Literals
Primitives
Closures

7 Printing

7.1
7.2

Forward declarations

Printing pairs

Printing functions
7.3 Printing strings

CONTENTS

CONTENTS

7.4 Printing streams
7.5 Printing numbers
7.6 Generic printing

8 Evaluator

8.1 Forward declarations

8.2 The eval function

8.3 The apply function

8.4 Auxiliary functions
Evaluating special forms
Evaluate a list of values
Apply a primitive operator to a list
Bind a list of variables to values

9 Reader

9.1 Tokenizer
Reserved symbols
Read macros
Token sizes
Tokenization

9.2 Parsing
Forward declarations
Token list parser
Token parser

10 REPL

10.1 Reading
10.2 Evaluation
10.3 Printing
10.4 Loop

11 Debug

11.1 Tests
String manipulation and printing
List/pair/dotted list notation
Proper list notation
Closure representation
Character list printing and environment lookup
Read file bit by bit
Display errors
Lookup primitives
Environment tests
Number test
Debriefing macro
Evaluator test

CONTENTS CONTENTS

Arithmetic evaluationtest 129
Arity tests L. 131
Dynamic binding test oo 131
Global binding test 132
Basic tokenizertest Lo 133
Basicparsertest 134
Arbitrary input parsing e e e 135
Test-only REPL 136

12 Entry point 139
12.1 Inmitialization L. 139
122 Tests . .« v v o e e e 140
123 mainfunction 141

v

Acknowledgements

This is an open-source project which anyone can contribute to. I’d like to thank the
people who helped me so far with this project.

Many thanks to Carl Misak (github.com/masak) not only for contributing with code,
but also for highlighting a lot of important aspects in the Bel specification, and also
for taking time to discuss other implementation aspects of the interpreter. This kind
of contribution is priceless, since it is easy to overlook important details on technical
documents. An extra pair of eyes on that regard is always welcome.

https://github.com/masak

CHAPTER

Introduction

The goal of this project is to provide a fully-functioning implementation of the Bel
language, proposed by Paul Graham. The main goal is not to provide performance;
instead, it is supposed to be a didatic approach to implementing a Lisp interpreter.

The code here contained is also a study on how to build a Lisp interpreter from
scratch in C. Given that Bel is so simple and is supposed to be a formalism before a
commercial language, it seems like the perfect didatic resource to do so.

Here are some useful links with language resources:

* Paul Graham’s Bel release website
* Language Guide
* Language Source Code, written in Bel itself

* Bel examples

Note that this software was a work-in-progress before archiving. Do not expect
it to work fully.

1.1 About literate programming

This interpreter is built using Org with Org-mode in Emacs. Its website specifies
that Org is "a format for keeping notes, maintaining TODO lists, planning projects, and
authoring documents with a fast and effective plain-text system".

All the code here appears in the order it is written on the actual code files. By using
Donald Knuth’s concept of literate programming, the relevant code blocks are tangled
and written in their specified code files, and then the application can be compiled.

By using this approach, I hope to maintain an application where the understanding
of what is being written comes before the code itself, so that the reader is able to take
and analyse parts of said code based on the prose that accompanies it.

http://paulgraham.com/bel.html
https://sep.yimg.com/ty/cdn/paulgraham/bellanguage.txt?t=1570993483&
https://sep.yimg.com/ty/cdn/paulgraham/bel.bel?t=1570993483&
https://sep.yimg.com/ty/cdn/paulgraham/belexamples.txt?t=1570993483&
https://orgmode.org/
http://www.literateprogramming.com/knuthweb.pdf

1.2. LICENSING CHAPTER 1. INTRODUCTION

1.2 Licensing

The Believe project is composed of two relevant documents: one being the textbook,
which contains all the prose parts plus the code blocks in relevant places; and another
being the code, which is composed solely of the code blocks contained in this texthook,
and can be understood both as the code blocks of the textbook or as a separate, tangled
file containing the relevant discussed code.

When redistributing the textbook, one should take the fextbook license into consider-
ation. But anyone using the code parts of the textbook or the tangled code file included in
the project’s repository, for any purpose, should take the code license into consideration
as well.

Textbook license
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Inter-

national License. This means that you are free to:

 Share: copy and redistribute the material in any medium or format

* Adapt: remix, transform, and build upon the material for any purpose, even com-
mercially.

But only if you follow the terms below:

« Attribution: You must give appropriate credit', provide a link to the license, and
indicate if changes were made?. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

» ShareAlike: If you remix, transform, or build upon the material, you must dis-
tribute your contributions under the same license® as the original.

See the CC-BY-SA 4.0* link for more information.

©00]

"You must provide the name of the creator and attribution parties, a copyright notice, a license notice,
a disclaimer notice, and a link to the original material.

2You must indicate if you modified the material and retain an indication of previous modifications.

3You can see a list of compatible licenses at <https://creativecommons.org/compatible-licenses>.

4<https://creativecommons.org/licenses/by-sa/4.0/>

4

https://creativecommons.org/compatible-licenses
https://creativecommons.org/licenses/by-sa/4.0/

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTION GUIDELINES

Code license

This software’s code is distributed under the MIT License, Copyright (c) 2019-2021
Lucas S. Vieira.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WAR-
RANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPY-
RIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

1.3 Contribution guidelines

Below are described a few guidelines to contribute to this project. It is important to
follow them to avoid confusion when contributing.

Code contribution guidelines

1. This is a literate program.
The meaning of this statement is that the software is primarily written as a prose
with code blocks. So the way to make an addition to Believe is to open a section
on the relevant part and add a code block with a proper code explanation in prose.

2. The code is written as a C code file.
Any new code should be added in a proper C code block. In the end, all C code
blocks can be tangled into a single believe. c file.

3. The code uses indentation similar to K&R.
Therefore we put types one line above the rest of the function declaration (except
for prototypes), and we put the function declaration braces on the next line. As for
code inside function scopes, the braces should be in front of the block declaration,
separated by a single space.

4. Use snake_case and respect naming conventions.
All definitions use snake case with lowercase names (e.g. bel_car), except for
enumerations (where the name of the enum and its definitions must be uppercase

5

1.3. CONTRIBUTION GUIDELINES CHAPTER 1. INTRODUCTION

—e.g. BEL_SYMBOL) and structs (the default st ruct definition must be upper-
case, while a typedef for the st ruct must be lowercase with the first letter in
uppercase —e.g2. Bel_pair).

5. Indentation must be done with spaces, and each indentation level takes four
spaces.
Though this is mostly arbitrary, this is the way most of the software was written.
This rule is invalid for Makefiles only, where the use of tabs is relevant.

6. Do not change the code file directly.
Files such as believe. c are automatically generated by tangling the code blocks
in this file. When creating pull requests, it is also desired that the believe.c
file is not commited with the rest of the changes.

7. Code without a relevant prose explaining the rationale of what was programmed
will not be accepted as contribution.
The rationale behind this project is partly related to providing a didatic imple-
mentation of a Lisp interpreter, which can be read as a book and implemented by
anyone.

These contribution guidelines are subject to change at any time during the software
development, as any necessity to clear up confusion appears.

Project communication guidelines

This project does not have a code of conduct. Instead, we rely on the spirit of joyful
creation of the participants and on the understanding and cordiality of the people taking
part on the project.

By contributing, you understand that the project maintainers are in no way responsi-
ble for the misconduct of any participants outside of the scope of this project. In addition,
any contributions will be discussed in the light of good faith, not taking into considera-
tion personal aspects such as race, skin color, gender, political views, or any other aspect
which is unrelated to the produced code itself. Having said that, any harrassment will
not be tolerated, as it is out of the scope of the project; the maintainers of the project
will handle the situation in the best possible manner they can.

The maintainers may also remove any other off-fopic discussions which are com-
pletely unrelated to the subject, to avoid pollution on issues, pull requests and such.

It is also important to state that, by contributing, you will also be relying on the good
faith and sensibility of the project maintainers to handle the topics above described;
again, these are stated merely as a general mentality of moderation, and not as fixed
rules which could be circumvented.

To increment this general mentality, we also follow the GNU Kind Communication
Guidelines’, which are not a code of conduct nor a list of rules as well, but more of a
reference on how one could approach the discussions and contributions on this software.

><https://www.gnu.org/philosophy/kind-communication.html>

6

https://www.gnu.org/philosophy/kind-communication.html

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTION GUIDELINES

These guidelines are reproduced below in an adapted fashion, with a few changes to
accomodate to this project.

1.

Please assume other participants are posting in good faith, even if you disagree
with what they say. When people present code or text as their own work, please
accept it as their work. Please do not criticize people for wrongs that you only
speculate they may have done; stick to what they actually say and actually do.

. Please think about how to treat other participants with respect, especially when

you disagree with them. For instance, call them by the names they use, and honor
their preferences about their gender identity®.

Please do not take a harsh tone towards other participants, and especially don’t
make personal attacks against them. Go out of your way to show that you are
criticizing a statement, not a person.

. Please recognize that criticism of your statements is not a personal attack on you.

If you feel that someone has attacked you, or offended your personal dignity,
please don’t hit back with another personal attack. That tends to start a vicious
circle of escalating verbal aggression. A private response, politely stating your
feelings as feelings, and asking for peace, may calm things down. Write it, set it
aside for hours or a day, revise it to remove the anger, and only then send it.

. Please avoid statements about the presumed typical desires, capabilities or actions

of some demographic group. They can offend people in that group, and they are
always off-topic in Believe discussions.

Please be especially kind to other contributors when saying they made a mistake.
Programming means making lots of mistakes, and we all do so - this is why re-
gression tests are useful. Conscientious programmers make mistakes, and then fix
them. It is helpful to show contributors that being imperfect is normal, so we don’t
hold it against them, and that we appreciate their imperfect contributions though
we hope they follow through by fixing any problems in them.

. Likewise, be kind when pointing out to other contributors that they should stop

using certain software. We welcome their contributions to our software even if
they don’t do that. So these reminders should be gentle and not too frequent -
don’t nag.

Please respond to what people actually said, not to exaggerations of their views.
Your criticism will not be constructive if it is aimed at a target other than their real
views.

®Please see the GNU Kind Communication Guidelines for more information on better usage of pro-
nouns and such. Maintainers will not be enforcing the usage of particular pronouns, but any misuse of
language for blatant purpose of offense will not be tolerated, as it can easily take a discussion to an off-
topic argument. Finally, always assume that any confusion about pronoun usage from the participants was
commited with no offending intention as well, and let the maintainers handle the situation if necessary.

7

1.4. BACKLOG CHAPTER 1. INTRODUCTION

10.

11.

12.

13.

. If in a discussion someone brings up a tangent to the topic at hand, please keep

the discussion on track by focusing on the current topic rather than the tangent.
This is not to say that the tangent is bad, or not interesting to discuss - only that
it shouldn’t interfere with discussion of the issue at hand. In most cases, it is also
off-topic, so those interested ought to discuss it somewhere else.

If you think the tangent is an important and pertinent issue, please bring it up as a
separate discussion, if it applies to Believe development.

Rather than trying to have the last word, look for the times when there is no need
to reply, perhaps because you already made the relevant point clear enough. If
you know something about the game of Go, this analogy might clarify that: when
the other player’s move is not strong enough to require a direct response, it is
advantageous to give it none and instead move elsewhere.

Please don’t argue unceasingly for your preferred course of action when a deci-
sion for some other course has already been made. That tends to block the activ-
ity’s progress.

If other participants complain about the way you express your ideas, please make
an effort to cater to them. You can find ways to express the same points while
making others more comfortable. You are more likely to persuade others if you
don’t arouse ire about secondary things.

Please don’t raise any political issues in Believe discussions, because they are
off-topic.

These communication guidelines are subject to change at any time during the soft-
ware development, as any necessity to clear up confusion appears.

1.4 Backlog

This is some sort of backlog I once maintained to keep track of what I needed to do
and what was already done. There are infinitely better ways to do that, and I’'m going to
keep it here so that anyone can pick it up where I stopped, if one wishes to.

Roadmap

I.

DONE Data types

* Symbols
* Pairs

— Lists
* Characters

* Strings

CHAPTER 1. INTRODUCTION 1.4. BACKLOG

* Numbers (opaque; general type only)

— Integers
— Float
Fractions

Complex
2. DONE Literals

* Primitives (representation)
3. TODO Environments

* Environment hierarchy (dyn > lex > glo) [implemented on lookup]
* Dynamic binding (visible everywhere for short time)

* Hierarchical lookup (bel_lookup)
4. TODO Functions

* Lexical bindings
5. TODO Evaluation [wip]

e Eval [wip]
U Special forms [wip]

* quote
* 11t
- fn =>literal closure
* 1f
[apply
* join
[J where => not so straightforward
* dyn
] after
[J ccc => Later?
[J thread => Later?
* set => global binding

6. Apply

1.4. BACKLOG CHAPTER 1. INTRODUCTION

On-the-fly checklist

* Environment functions
* Global environment object globe
* Various necessary predicates
— stringp predicate
* Error object
e String printing
* Test for errors on core functions
* Dynamic environment
* Assignments/Unassignments
* err primitive function, basic error handling
* Use BEL_DEBUG flag everywhere!
* Move debug printing functions to actual printing behaviour
* Prototype evaluator
Proper error propagation
Add proper references with Org-ref and bibtex

Lexical environment object scope, shadowable, not unique (is it necessary?)

O O O O

Prevent circular printing. Particularly useful for environments and closures

10

O 00 N AN R WD =

CHAPTER

Tools and scripts

2.1 Makefile

This software was primarily developed on Void Linux x86¢4, using the Clang com-
piler. The following Makefile is the one used for building Believe.

CC = clang

CFLAGS = -std=cl7 -g -02 -Wall -DBEL_DEBUG
CLIBS = -lgc —-1lm

BIN = believe

OBJ = believe.o

.PHONY: clean

$(BIN) : $ (OBJ)
$(CC) $(CFLAGS) $(CLIBS) -o $@ s~

$.0: %.cC
$(CC) $(CFLAGS) -c -o $@ $©

clean:
rm -rf x.o0 $(BIN)

2.2 Memory leak testing

This script generates a log file with memory leak information using Valgrind. Val-
grind’s output is stored in believe. log.

11

1
2
3

2.3. TANGLING CHAPTER 2. TOOLS AND SCRIPTS

valgrind —--check_leaks=full --log-file="believe.log" -v
— ./believe

2.3 Tangling

The following snippet can be run from Emacs to enable tangling on save for this file
only.

Tangling is the process of taking each block of code and adding it to its specific file.
Believe’s code will be written in C source files; the Makefile will be written in its own
file; and so on. Notice that some blocks (like this one) is not written anywhere, and is
meant to be evaluated from inside Emacs.

2.4 Running the program

This script attempts to build and run the Bel interpreter. It will also enable verbose
output for the garbage collector.

make

export GC_PRINT_STATS=1
./believe

12

O 00 N AN W R WD =

—
(=]

A W oD =

CHAPTER

Libraries and headers

3.1 File header

Let’s add a modest copyright notice to the program’s header.

/* Believe v0.3 *
* A Bel Lisp interpreter. *
* Copyright (c) 2019-2021 Lucas Vieira. *

*

This program is distributed under the MIT License. See
the LICENSE file for details.

*

%
%

*

* Development information can also be consulted on the
book which accompanies this software, which was
written in literate programming form. For more

* information, see https://github.com/luksamuk/believe. */

*
% % ok %

*

3.2 Software-related definitions

These definitions relate to program metadata which is going to be displayed on its
startup.

#define BELIEVE_VERSION "0.3"

#define BELIEVE_COPYRIGHT "2019-2021 Lucas Vieira"
#define BELIEVE_LICENSE "MIT"

#define BELIEVE_BUILD TIME __ DATE__ " " _ TIME _

We’ll use a flag for debug which influences the building process. Let’s call this flag
BEL_DEBUG.

13

O 00 N AN R WD =

[S N R S

3.3. DEFAULT HEADERS CHAPTER 3. LIBRARIES AND HEADERS

When building, if you pass this flag to Clang (see the Makefile), some debug outputs
will be available.
By default we’ll leave it on, at least for now.

3.3 Default headers

We’ll be using stdio.h for default console I/O, plus stdint .h for some stan-
dard integer types. st ring. h provides definitions to handle string manipulation on the
C side, however Bel is supposed to have its own string representation, to be discussed
later. errno. h is used to fetch error strings from streams, for example; and math.h
is useful for math operations. stdarg.h is used for creating variadic functions, and
finally, ct ype . h is used for comparing characters when parsing expressions.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <stdarg.h>
#include <ctype.h>

3.4 Boehm-Demers-Weiser Garbage Collector

We also use Boehm-Demers-Weiser GC for garbage collection, instead of program-
ming our own. The GC_DEBUG flag helps on debugging. See that we use —1gc on the
Makefile to link the relevant library to the application.

#1fdef BEL DEBUG
#define GC_DEBUG
#endif

#include <gc.h>

Plus, one could check the Boehm-Demers-Weiser GC tutorial slides by Hans-J.
Boehm, for a quick overview of this library.

14

https://www.hboehm.info/gc/04tutorial.pdf

[o I e Y L S

CHAPTER

Fundamental data types

The first thing to do is specify how the data is going to be handled by the interpreter.
Here, we define each of these kinds of data. Any procedure for data manipulation will
be defined afterwards.

4.1 Enumerating Bel types

We begin by specifying all data types, which Bel has four: symbols, pairs, characters
and streams. We also add a number type, which is non-standard, but will be useful; this
decision will be explained in its section.

typedef enum

{
BEL_SYMBOL,
BEL_PAIR,
BEL_CHAR,
BEL_STREAM,
BEL_NUMBER

} BEL_TYPE;

4.2 Pair

A pair can have two things, which can in return be one of the four data types them-
selves. Since this is sort of a recursive definition, we need to make a forward declaration
of the general Bel type, which encloses all four data types.

typedef struct BEL Bel; // Forward declaration

15

N N L B W

4.3. CHARACTER CHAPTER 4. FUNDAMENTAL DATA TYPES

typedef struct
{
Bel =*car;
Bel xcdr;
} Bel_pair;

4.3 Character

A character is nothing but an integer in standard C. For now we’ll support only
ASCII, so there is no actual need to instantiate the proposed table of characters — this
might change in the future.

We say that a character is nothing but a signed 8-bit integer. Should be enough for
now.

typedef int8_t Bel_char;

4.4 Symbol

A symbol is nothing but a specific index on the symbol table, so that’s how we’ll
define it.

typedef uint64_t Bel_ sym;

4.5 Stream

The stream type i1s somewhat implementation-dependent. In C, a standard way to
refer to streams is to use a FILE pointer, since stdout and stdin themselves are of
such type. So we just wrap these pointers in a stream type.

Plus, as per Bel’s specification, a stream has three statuses: closed, open for reading,
open for writing. Therefore, we use a single enumeration to represent these three states.

Since Bel’s specification writes to a stream bit by bit, we need to cache the cur-
rently filled byte inside the structure, from left to right, dumping each byte as it is filled.
Upon closing, the stream shall write the cache at the end of the file, plus the incomplete
remaining bits. A "new" (not written and not dumped) cache is a single byte, and is
guaranteed to be filled with zero (\0O \0 \0 \0 \0 \0 \O \O).

When dealing with reading from a stream, since Bel also reads bit by bit only, we
take the same advantage of the cache, however as the opposite approach: we read a
single byte from stream and keep the cache full. As we read each bit, we convert it to
a Bel character (\0 or \1). Once all bits of the cache have been read, another byte is
fetched, stored on cache, and so on.

16

O 0 N AN N R WD =

O 00 N AN R WD =

CHAPTER 4. FUNDAMENTAL DATA TYPES 4.6. NUMBER

typedef enum BEL_STREAM_STATUS

{
BEL_STREAM CLOSED,
BEL_STREAM_ READ,
BEL_STREAM WRITE

} BEL_STREAM_STATUS;

typedef struct

{
BEL_STREAM_STATUS status;

FILE *raw_stream;
uint8_t cache;
uint8_¢t cache_used;

} Bel_stream;

4.6 Number

Bel does not specify any numeric types in its standard. In fact, numbers could be
reproduced in Bel by using Church numerals, for example. However, this approach has
a huge impact on performance, enough to make us want actual numeric types in our
interpreter.

A number in Believe is a union of many number subtypes. The number can be an
integer, a float, a fraction or even a complex number in its constitution, but this coercion
happens away from the eyes of the Bel programmer; from his standpoint, there is only
an opaque number type.

Let’s start by defining the enumeration of types. Integers are C 64-bit signed ints,
and floats are, in fact, C doubles.

typedef enum {
BEL_NUMBER_INT,
BEL_NUMBER_FLOAT,
BEL_NUMBER_FRACTION,
BEL_NUMBER_COMPLEX

} BEL_NUMBER_TYPE;

typedef int64_t Bel_ longint;
typedef double Bel_float;

We forward declare the Be1_number structure as a typedef fora st ruct BEL_NUMBER.
typedef struct BEL_NUMBER Bel_number; // Forward declaration

Now we define our fraction and complex subtypes. Notice that they use Be1_number
in their constitution. This is on purpose, as it allows us to create recursive definitions of
numbers.

17

O 0 N AN AW N~

O 00 N AN W R WD =

O 00 N AN W AW =

—_ = =
N = O

4.7. THE BEL STRUCTURE

CHAPTER 4. FUNDAMENTAL DATA TYPES

typedef struct ({
Bel xnumer;
Bel =*denom;

} Bel_fraction;

typedef struct {
Bel x*real;
Bel ximag;

} Bel_complex;

All that is left is to define our Be1_number formally.

struct BEL_NUMBER {
BEL_NUMBER_TYPE
union {
Bel_longint
Bel_float
Bel_ fraction
Bel_complex
}i
bi

type;

num_int;
num_float;
num_frac;
num_compl;

4.7 The Bel structure

The remaining thing to do is join all the types into the Bel type, which will serve

as our generic way of dealing with things.

// Aliased as 'Bel'
struct BEL
{
BEL_TYPE type;
union {
Bel_ sym
Bel_pair *
Bel char
Bel_ stream
Bel number
bi
bi

before

sym;
pair;
chr;
stream;
number;

18

A W oo = S S

[S

CHAPTER

Essential structures and manipulation

of data

5.1 Basic definitions

These definitions relate to essential symbols of the Bel global environment. They
also encode the symbols’ position on the global symbol table, to be defined later.

#define BEIL_NIL ((Bel_sym)0)
#define BEL_T ((Bel_sym)1)
#define BEI_O ((Bel_sym)2)
#define BEI_APPLY ((Bel_sym)3)

The following symbols are axioms which are global to the program. One is expected
to use them instead of creating new symbols, though it is not strictly necessary.

Bel
Bel
Bel
Bel

*bel g_nil;
*bel_g_t;
*bel_g_o;
*bel_g_apply;

These other variables are responsible for holding other axioms on the system. More
on then will be specified later.

Bel
Bel
Bel
Bel
Bel

*bel_g_chars;
*bel_g_ins_sys;
*bel_g_outs_sys;
*bel_g_ins;
*bel_g_outs;

19

~N O LB =

5.2. RREARCBRBS ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

Bel xbel_g_prim;
Bel xbel_g_clo;

We may also define temporary variables for the global, lexical and dynamic environ-
ments.

Bel xbel_g_scope;
Bel xbel_g_globe;
Bel xbel_g_dynae;

Forward declarations

We need to forward declare a few functions which will be useful for certain opera-
tions. For example, it is important that we make a forward declarationof be1_mkerror,
since the primitives should depend on it; also, providing be1_mkstring ensures that
the error format can be easily created, and so on.

/* Forward declarations =/

Bel *bel_mkerror (Bel xformat, Bel =*vars);
Bel xbel_mkstring(const charx);

Bel *bel_mksymbol (const charx);

Bel xbel_car (Belx);

Bel *bel_cdr (Belx);

Bel xbel_mklist (int, ...);

5.2 Predicates

It is important to have a few predicates which will help us check for errors. These
predicates do not check for argument nullability (e.g. unmanaged pointers), so use it
wisely and only on initialized data!

symbolp

bel_symbolp tests whether the element is a symbol.
#define bel_symbolp (x) ((x)->type==BEIL_SYMBOL)
nilp

bel_nilp tests whether the element is the symbol ni1.

#define bel_nilp(x) \
(bel_symbolp (x) && ((x)—->sym==BEL NIL))

20

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIOR. (HRERTAATES

pairp

bel_pairp tests whether the element is a pair.

#define bel_pairp(x) ((x)->type==BEL PAIR)

atomp

n

bel_atomp tests whether an element is not a pair — that is, if it is not "divisible".

#define bel_atomp (x) (!bel_pairp(x))

charp

bel_charp tests whether the object is a character.

#define bel_charp (x) \
(((x)—>type==BEIL_CHAR))

streamp
bel_streamp tests whether the object is a stream.

#define bel_ streamp (x) \
(((x)->type==BEIL_STREAM))

numberp

bel_numberp determines whether x is a number or not. Notice that numbers are
non-standard to Bel’s definition.

#define bel_numberp (x) \
((x) —>t ype==BEIL,_NUMBER)

idp

bel_1idp tests whether an object is identical to another. According to the Bel speci-
fication, identity is stricter than equality: there is only one of each symbol and character.
Pairs and streams are compared by their references, so they are identical if and only if
they reside in the same memory address.

This is the first predicate that is implemented as a proper C function, and it is used
only internally; therefore, it outputs a C integer value for truth and falsity.

int bel_idp_nums (Bel *xx, Bel =*y); // Forward declaration

21

O 0 N AN AW N~

[T T SN S
[« Y N S S S =]

O 00 N AN W R WD =

L T N T O S e Sy
N o= O 0 X NN NN R W N = O

5.2. RREARCBRBS ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

int

bel _idp(Bel xx, Bel xy)

{

if (bel_symbolp(x))

return (x—->sym == y->sym);
else if (bel_charp(x))

return (x->chr == y->chr);
else if (bel_numberp(x)) {

// Non-standard
return bel_idp_nums (x, Vy);

// For pairs and streams, check for
// pointer aliasing
return (x == y);

Numbers are non-standard, so we develop our own identity test for them: if two
numbers have the same subtype (integer, float, fraction, complex) and the same value,
they are identical. In the case of numbers with components (fraction, complex) we re-
cursively test for component identity instead of comparing values directly.

int

bel

{

idp_nums (Bel xx, Bel xy)

if (x->number.type == y->number.type) {
switch (x—->number.type) {
case BEL_NUMBER_INT:
return (x—>number.num_int
== y—->number.num_int);
case BEL_NUMBER_FLOAT:
return (x—->number.num_float
== y->number.num_float);
case BEL_NUMBER_FRACTION:
return
(bel_idp_nums (
x—>number.num_frac.numer,
y—>number.num_frac.numer)
&& bel_idp_nums (
x—>number.num_frac.denom,
y—>number.num_frac.denom)) ;
case BEL_NUMBER_COMPLEX:
return
(bel_idp_nums (

22

23
24
25
26
27
28
29
30
31

O 0 N AN N R WD =

[—
- O

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIOR. (HRERTAATES

x—>number.num_compl.real,
y—>number.num_compl.real)

&& bel_idp_nums (
x—>number.num_compl.imag,
y—>number.num_compl.imag)) ;

}i
}

return 0O;

errorp

bel_errorp tests whether a specific object is a list in the format (1it err
rest).

int
bel_errorp(Bel xx)
{
if(!'bel_pairp(x)) return 0;
if(!'bel_idp(bel_car(x), bel_mksymbol ("Iit")))
return 0O;
Bel *cdr = bel_ cdr (x);
if(!'bel_idp(bel_car (cdr), bel_mksymbol ("err'")))
return 0O;
return 1;

proper-list-p

A proper list is any list which ends in an appropriate ni1 symbol. So for example,
(1 2 3) isaproperlist,but (1 2 3 . 4) is not. Compare how these lists can be
expressed by using dot notation:

* (1 . (2 . (3 . nil)))
* (1 . (2 . (3. 4)))

An empty list is considered a proper list as well.

bel_proper_1list_p checks whether a list is indeed a proper list. We do that by
traversing the list, pair by pair. If the cdr is ni1, it is proper; if it is a pair, it proceeds
with the traversal. But if the cdr is anything else, then it is not a proper list.

int
bel _proper_list_p(Bel xx)
{

23

O 0 9 A W b

5.2. RREARCBRBS ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

if(!'bel_pairp(x) && !bel_nilp(x))

return 0O;

Bel xitr = x;
while(!bel_nilp(itr)) {
if('bel_pairp(itr))
return 0O;
itr = bel_cdr(itr);

return 1;

stringp

An object is a string if and only if:
* itis a proper list;

* it contains characters only.

bel_stringp tests for this. However, this first implementation is a little naive,
since it performs a proper list check, which involves traversing an entire list, and then it
traverses the list again, checking for characters in the car. This overhead can be reduced
in the future.

int

O 00 N N W R WD =

L e S S e S Y
O 0 N AN W kR W = O

bel_stringp (Bel =*x)

{

if(!'bel_proper_list_p(x)) |
return 0O;

Bel *itr = x;
while (!bel_nilp(itr)) {
Bel *car = bel_car (itr);

if (!bel_charp(car))
return 0;

itr = bel_cdr(itr);

return 1;

24

N N R W N = O 00 N AN R WD =

N N LR WD =

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIOR. (HRERTAATES

literalp

bel_literalp takes a proper list and tells whether the list is a literal, that is, if
the first element of the list is the symbol 1it.

int
bel_literalp(Bel =*x)
{
if (!'bel_proper_list_p(x))
return 0;

return bel_idp(bel_car (x),
bel_mksymbol ("I1it"));

primitivep

bel_primitivep takes a literal and tests whether it is a primitive, that is, if the
second element of the list is the symbol prim.

int
bel primitivep (Bel =*x)
{
return bel_literalp (x)
&& bel_idp(bel_car (bel_cdr(x)),
bel mksymbol ("prim")) ;
}
closurep

bel_closurep takes a literal and tests whether it is a closure, that is, if the second
element of the list is the symbol c1o.

int
bel_closurep (Bel =*x)
{
return bel_literalp (x)
&& bel_idp(bel_car (bel_cdr(x)),
bel_mksymbol ("clo"));
}
quotep

bel_quotep takes a proper list and determines whether it is a quoted form.

25

O 0 N AN AW N~

O 0 N AN AW N~

L e S S S S S Y
O 0 9 N LN RN = O

[\

5.3. SSHMBPOERABEESENDISYMBRUS TURES AND MANIPULATION OF DATA

int
bel_quotep (Bel =xx)

{
if(!'bel_proper_list_p(x))
return 0O;

return bel_idp(bel_car (x),
bel_mksymbol ("quote")) ;

number-list-p

bel_number_1list_p determines whether x is a proper list of numbers.

int
bel _number_list_p (Bel =*x)
{
if(!'bel_proper_list_p(x)) |
return 0;

}
Bel xitr = x;
while(!bel_nilp(itr)) {

Bel xcar = bel_car(itr);

if (!'bel_numberp (car))
return 0O;

itr = bel_cdr(itr);
}

return 1;

5.3 Symbol Table and Symbols

The symbol table is an array that grows as necessary, doubling in size, but never
shrinks on the program’s lifetime. Each element of the table is a const C string.
We begin by defining such structure and a global symbol table.

typedef struct ({

const char x*tbl;
uint64 _t n_syms;

26

O 00 N AN kAW =

O = U —
W = O

O 0 N AN W R W N =

CHAPTER 5. ESSENTIAL STRUCTURESSANIS YMBOPUTARNOM D BXMBOLS

uint64_t size;
} _Bel_sym_table;

static _Bel_sym_table g_sym_ table;

To initialize the symbol table, we give it an initial size of four, just enough to enclose
Bel’s four fundamental symbols: nil, t, o and apply. Notice that the order of these
symbols relate to their predefined macros, so any failure here is unexpected.

void
bel_sym_table_init (void)
{
g_sym_table.n_syms = 4;
g_sym_table.size 4;
g_sym_table.tbl
GC_MALLOC (g_sym_table.size x sizeof (charx));

g_sym_table.tbl[BEL_NIL] = "nil";
g_sym_table.tbl[BEL_T] = "c",;
g_sym_table.tbl[BEL_O] = "o";
g_sym_table.tbl[BEL_APPLY] = "apply";

The lookup function bel_sym_table_find does a linear search for the pre-
sented literal on the symbol table. However, if it doesn’t find the symbol, it implicitly
calls bel_sym_table_add, which appends the symbol to the table.

This is obviously not a very wise approach as it opens up for some exploits on in-
terning symbols, but should be enough as long as these symbols are only really interned
on 1it or quote scopes.

Bel_sym bel_sym table_add(const charx*); // Forward declaration

Bel_ sym
bel_sym_table_find(const char xsym literal)
{
uint64_t i;
for(i = 0; i < g_sym_table.n_syms; i++) {
if (!strcmp(sym_literal, g_sym_table.tbl[i])) {
return i;

return bel_sym_table_add(sym_literal);

27

15
16
17
18
19
20
21
22
23
24
25
26
27

woA W N =

[o I e Y T

5.4. RMR®TER 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

Bel_sym
bel_sym _table_add(const char *sym_literal)
{
if(g_sym _table.n_syms == g_sym_table.size) {
uint64_t new_size 2 x g_sym_table.size;
g_sym_table.tbl = GC_REALLOC (g_sym_table.tbl,
new_size * sizeof (charx));

g_sym_table.size = new_size;
}
g_sym_table.tbl[g_sym_table.n_syms++] = sym literal;
return (g_sym_table.n_syms - 1);

Eventually we’ll also need to take a symbol and find its character counterpart. Since
the table is immutable, we can do that instantaneously by taking the character string
at the symbol’s position on the table. Notice that we do not check whether the given
argument is a symbol, since it is also an internal function.

const charx
bel_sym_find_name (Bel *sym)
{
return g _sym table.tbl[sym—->sym];

Last but not least, we create a proper tool to build a symbol. Just give it your desired
symbol as a string literal and the runtime takes care of the rest.

Belx
bel mksymbol (const char =xstr)

{

Bel =*ret GC_MALLOC (sizeof (xret));
ret->type = BEL_SYMBOL;

ret->sym = bel_sym_table_find(str);
return ret;

5.4 Pairs

Pairs are the kernel of every Lisp, so we need tools to manipulate them.
We begin by specifying the function which builds pairs. Notice that the function
itself takes two references to values, so pairs cannot exist without their car and cdr.

28

O 0 N AN N R WD =

—_
(=]

O 0 N AN N R WD =

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATION OF PATAAIRS

Bel=x*
bel_mkpair (Bel *car, Bel xcdr)
{

Bel *ret = GC_MALLOC (sizeof (*xret));
ret->type = BEL_PATR;

ret—>pair = GC_MALLOC (sizeof (Bel_pair));
ret—->pair->car = car;

ret->pair->cdr = cdr;
return ret;

Now we may easily extract information from pairs, using the car and cdr operations.

Belx
bel_car (Bel «*p)
{
if(bel_nilp(p))
return bel_g nil;

if(!'bel_pairp(p)) |
return bel_mkerror (
bel_mkstring("Cannot extract the car of ~a."),
bel_mkpair(p, bel_g_nil));

return p->pair->car;

}

Belx*
bel_cdr (Bel =*p)
{
if (bel nilp(p))
return bel_g nil;

if (!bel_pairp(p)) |
return bel_mkerror (

bel_mkstring("Cannot extract the cdr of ~a."),
bel_mkpair(p, bel_g_nil));

return p->pair->cdr;

Let’s also build a utility to return the size of a list. This is a O (n) operation which
takes a well-formed list and iterates over it.

29

O 00 N AN W R WD =

—_ -
- o

O 00 N AN W AW =

L e S S e S S Y
O 0 N AN W R WD = O

5.4. RMR®TER 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

Note that calculating the length of something that is not a proper list makes no
sense and will crash this operation. So before calling bel_length, it is probably
a good idea to check for a valid proper list using bel_proper_1list_p or a similar
procedure.

uinté64_t
bel_length (Bel xlist)
{
Bel *itr = list;
uint64_t len = 0;
while(!bel _nilp(itr)) {
len++;
itr = bel_cdr(itr);
}

return len;

We can also create a variadic function which implements Bel string creation from a
number of arguments passed to that string. This is useful when creating lists from C.

bel_mklist asks for a number of elements and a variadic list of Be1x objects.
Then it attempts to create a single pair for each object, and place the object itself in the
car of that pair.

When another object is added into the list, yet another pair is created and so on, and
this pair is set as the cdr of the previous pair.

Belx*
bel mklist (int n_elem, ...)

{

if(n_elem <= 0) return bel g nil;

va_list args;
va_start (args, n_elem);

Bel *xlist_start = NULL;
Bel xlist = NULL;

int i;
for(i = 0; 1 < n_elem; i++) {
Bel xnewp =
bel_mkpair(va_arg(args, Belx),
bel _g_nil);
if(!'list) {
list = newp;
list_start = list;

30

20
21
22
23
24
25
26
27
28
29
30

0 N N R WD =

O 0 N AN W R W N =

CHAPTER 5. ESSENTIAL STRUCTURES AN MANARAHRS ANIDATRINGS

} else {
list->pair->cdr = newp;
list = newp;

if(!list_start)
return bel_g nil;

return list_start;

5.5 Characters and Strings
Let’s begin by adding a small function to wrap a character in a Bel object.

Belx*
bel_mkchar (Bel_char c)
{
Bel *ret = GC_MALLOC (sizeof xret);
ret->type BEL_CHAR;
ret->chr C;
return ret;

Characters have the size of one byte, so if we take a single list of 8 \1 and \0
characters, we should be able to generate a bitmask of the corresponding character in

question.

Belx
bel_char_ from_binary (Bel xlist)
{
if(!'bel_pairp(list)) {
return bel mkerror (
bel_mkstring ("The binary representation of "

"a character must be a string of "

"characters \\0 and \\1."™"),
bel g_nil);

if (!'bel_proper_list_p(list)) {
return bel_mkerror (
bel_mkstring ("The object ~a is not a proper "

31

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

5.5. CHAPACRER EABENITRINSTRUCTURES AND MANIPULATION OF DATA

n

"list, and therefore not a 1list
"of characters \\0 and \\1.™),
bel_mkpair(list, bel_g nil));

size_t len = bel_ length(list);

if(len != 8) {
return bel_mkerror (
bel_mkstring ("The binary representation of "
"a character must have exactly
"eight characters \\0 or \\1."),

n

bel _g_nil);

Bel char mask = '"\0';
size_t i;

Bel xcurrent = list;

for(i = 0; 1 < len; 1i++) {

Bel xbitchar = bel_ car (current);

if (!'bel_charp(bitchar)) {
return bel_mkerror (
bel _mkstring ("The provided binary "
"representation of a "
"character does not contain "
"only characters."),

bel g _nil);

if (bitchar->chr !'= '0' && bitchar->chr !'= '1") {
return bel_mkerror (

bel_mkstring ("The binary representation of "

"a character must have exactly

"eight characters \\0 or \\1."),

bel _g_nil);

if (bitchar->chr == '1") {
mask |= (1 << (7 = 1)),

}

current = bel_ cdr (current);

32

58
59
60

O 0 N AN W R W N =

S S

CHAPTER 5. ESSENTIAL STRUCTURES AN MANARAHRS ANIDATRINGS

}

return bel_mkchar (mask) ;

Strings on the Bel environment are nothing more than a list of characters, therefore
we need a way to convert C strings to proper Bel lists.

Belx
bel_mkstring(const char xstr)

{

size_t len = strlen(str);

if(len == 0)
return bel_g nil;

Bel x*pairs = GC_MALLOC (len * sizeof (Bel));
// Create pairs where CAR is a character and CDR is nil

size t 1i;
for(i = 0; 1 < len; 1i++) {

Bel *chr = GC_MALLOC (sizeof =xchr);
chr->type = BEL_CHAR;

chr->chr = str[i];

pairs[i] = bel_mkpair (chr, bel_g nil);

// Link all pairs properly
for(i = 0; 1 < len — 1; i++) {
pairs[i]—->pair->cdr = pairs[i + 1];

return pairs[0];

We also add a utility to take back a Bel string and turn it into a garbage-collected C
string.

Note that the errors it can produce are instead dumped to the console and we return a
null pointer; proper manipulation of this function is a responsibility of the programmer,
since this is an internal function.

char~
bel_cstring (Bel xbelstr)

{
if (!bel_pairp(belstr)) {

33

O 0 3 N W

10

12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

O 00 NN N B W =

—_
(=]

5.6. SIREARNER 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

5.6

puts ("INTERNAL ERROR on bel_cstring: "
"argument 1is not a pair");
return NULL;

if(!'bel_stringp(belstr)) {
puts ("INTERNAL ERROR on bel_cstring: "
"argument is not a string");
return NULL;

uint64_t len = bel_length (belstr);
if(len == 0) return NULL;

GC_MALLOC_ATOMIC ((len + 1) * sizeof (xstr));

char xstr

Bel xitr = belstr;
size t 1 = 0;

while(!bel _nilp(itr)) {
str[i] = bel_car (itr)—->chr;

itr = bel_cdr(itr);
i++;

}

str[i] = '"\0';

return str;

Streams

We start by creating tools to manipulate streams. First, we create a raw stream from

a file.

Belx

bel mkstream(const char+ name, BEL_STREAM STATUS status)

{

Bel *ret = GC_MALLOC (sizeof =*ret);
BEL_STREAM;

ret->type

if (status == BEL_STREAM_CLOSED) {
return bel mkerror (
bel _mkstring("Cannot create a stream with "
"CLOSED status."),

34

O 0 N AN R WD =

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIONSH: BAREAMS

bel_g_nil);

if (!strncmp (name, "ins", 3)) {
ret—>stream.raw_stream = stdin;

} else if(!strncmp (name, "outs", 4)) {
ret->stream.raw_stream = stdout;

} else {

ret—->stream.raw_stream =
fopen (name,
status == BEL_STREAM READ ? "rb" : "wb");

if(!ret->stream.raw_stream) {
return bel mkerror (
bel _mkstring("Unable to open stream ~a."),
bel_mkpair (
bel _mkstring(name), bel_g nil));

ret->stream.status status;
ret->stream.cache = Qu;
ret->stream.cache_used
return ret;

Ou;

One important thing to have is a function which inputs a single bit in a file. We use
the previously defined cache system for that; by filling the bits from left to right, we’ll
enable output as a single bit.

First we define the function which dumps and resets the cache of a specific stream
when the cache is full; this should come in handy when closing the stream as well. After
that, we do the actual bit writing. And of course, writing a bit returns t or nil for
success and failure; this will most likely not be external to the Bel environment itself,
since a failure in writing must signal an error. But that is not the job for this primitive.

Belx*
bel_stream_dump_cache (Bel_stream xstream)
{
if(!fwrite(&stream->cache, 1, 1, stream->raw_stream)) {
return bel_g nil;
}
stream—>cache_used = 0u;
stream—->cache Ou;
return bel_g t;

35

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

O 0 N AN AW~

5.6. SIREARNER 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

Belx*

bel_stream_write_bit (Bel_stream *stream, Bel_char bit)

{

if(bit != '0" || bit != '1") {
return bel mkerror (
bel _mkstring("Written bit must be represented "
"as a character 0 or 1"),

bel_g_nil);

if (stream->status != BEL_STREAM WRITE) {
return bel mkerror (
bel _mkstring("Write stream is not at WRITE "
"state"),
bel _g_nil);

if (stream->cache_used >= 8) {
return bel_stream_dump_cache (stream) ;
} else {
if(bit == '1") {
stream->cache |= (1 << (7 - stream->cache_used));
}

stream->cache_used++;

return bel_mkchar (bit) ;

We can take advantage of the same variables to read single bits from a file, as de-
scribed before too. Keep the cache full, read single bits as Bel characters, fill the cache
when the read bits are exhausted.

Belx*
bel stream fill cache (Bel_stream xstream)
{
if(!fread(&stream—->cache, 1, 1, stream—->raw_stream)) {
// Return nil on EOF
return bel_g nil;
}
stream—->cache_used = 8§;
return bel_g t;

36

O 00 N AN R WD =

—_ = e
W N = O

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIONSH: BAREAMS

Belx*
bel_ stream _read_bit (Bel_stream xstream)
{
if (stream—>status != BEL_STREAM_READ) ({
return bel mkerror (
bel_mkstring ("Read stream is not at READ "

"state"),
bel_g_nil);
}
Bel =xret;
if (stream—>cache_used == 0) {
ret = bel_stream_fill_cache (stream);

if (bel _nilp(ret)) {
return bel_mksymbol ("eof");

uint8_t mask = (1 << (stream—->cache_used - 1));
ret = bel _mkchar (((mask & stream—>cache) == mask)
? ((Bel_char) '1'") : ((Bel_char)'0"));

stream—->cache_used-—;
return ret;

We’ll also need a tool to close a certain stream. Here we’re being a little more careful,
since streams are managed more directly, by using the C API. And of course, if we’re
dealing with output, dump the stream cache before closing the file.

Belx*
bel_stream_close (Bel xobj)
{
if (obj->type != BEL_STREAM) {
return bel mkerror (

bel mkstring("Cannot close something that "

"is not a stream."),
bel g_nil);
}
if (obj->stream.status == BEL_STREAM_CLOSED) {
return bel_mkerror (
bel_mkstring("Cannot close a closed stream."),

37

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

[e Y R T

5.6. SIREARNER 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

bel_g_nil);

// Dump cache before closing
if (obj->stream.status == BEL_STREAM_WRITE) {
bel_stream_dump_cache (&0bj—>stream) ;

if(!fclose(obj->stream.raw_stream)) {
obj->stream.raw_stream = NULL;
obj->stream.status = BEL_STREAM_CLOSED;

return bel_g t;

return bel_mkerror (
bel_mkstring("Error closing stream: ~a."),
bel_mkpair (
bel_mkstring(strerror (errno)),
bel_g_nil));

The default input and output streams are enclosed in Bel objects here, however they

relate to stdin and stdout respectively. To the system, by default they have nil
value.

void
bel init_ streams (void)

{

bel _g_ins = bel _g_nil;
bel_g_outs = bel_g_nil;
bel_g_ins_sys = bel_mkstream("ins"”, BEL_STREAM READ);

bel_g outs_sys = bel_mkstream("outs", BEL_STREAM WRITE) ;

Stream manipulation safety

Since streams are defined taking advantage of the C API for manipulating files, un-

fortunately these demand careful usage on Bel programs. When handling streams, it is
absolutely necessary to close them. The Boehm GC does not have finalizers for C bind-
ings, so unfortunately it is not possible for now to call a finalizer which automatically
closes the stream when the stream object is garbage collected.

38

O 0 N AN N R WD =

O 00 N AN R WD =

(= Y N S

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIONGF NAMBERS

5.7 Numbers

As stated before, numbers are not described in Bel specification, however we’re
implementing it for minimal ease and performance for arithmetic manipulation.

We’ve built a resilient and recursive model for constituting numbers, so we begin by
arranging tools to create them.

Number generation

Integers are pretty straightforward: we just allocate a proper space and store them.

Belx*

bel_mkinteger (int64_t num)

{
Bel =*ret = GC_MALLOC (sizeof (*ret));
ret->type = BEL_NUMBER;
ret->number.type BEL_NUMBER_INT;
ret->number.num_int num;
return ret;

The same goes for the float type (which is actually a C double).

Bel=*
bel mkfloat (double num)
{

Bel =*ret = GC_MALLOC (sizeof (*ret));
ret->type = BEL_NUMBER;
ret—>number.type = BEL_NUMBER_FLOAT;
ret->number.num_float = num;

return ret;

A fraction has a layer of complexity, though. We take a numerator and a denominator
as numbers, but we need to make sure they are numbers. Plus, even if they were, we need
to make sure that the denominator is not zero. However, the only checks we perform here
are related to the numberness of numerator and denominator.

Belx
bel mkfraction (Bel xnumer, Bel *denom)
{
if (!bel_numberp (numer)) {
return bel_mkerror (
bel _mkstring ("The object ~a is not "

39

O 00 N AN R WD =

L T N T O S e Sy
N o= O 0 X NN N N R W N = O

5.7. NIHMBERR 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

"a number."),

bel_mkpair (numer,

if (!bel_numberp (denom)) {
return bel_mkerror (

bel_mkstring ("The object

bel_g_nil));

~a 1s not "

"a number."),

bel_mkpair (numer,

Bel xret

ret->type

ret->number.type
ret—->number.num_frac.numer
ret->number.num frac.denom
return ret;

bel_g_nil));

GC_MALLOC (sizeof
BEL_NUMBER;
BEL_NUMBER_FRACTION;
numer;

denom;

(xret));

We follow the same principle for a complex number: real and imaginary parts need

to be a number themselves.

Belx*
bel_mkcomplex (Bel =*real,
{
if (!bel_numberp (real)) {
return bel_mkerror (

bel _mkstring("The object

Bel ximag)

~a 1s not "

"a number."),

bel mkpair (real,

if (!bel_numberp (imag)) {
return bel_mkerror (

bel _mkstring ("The object

bel _g_nil));

~a 1s not "

"a number."),

bel_mkpair (imag,

Bel xret

ret->type

ret->number.type
ret->number.num_compl.real
ret->number.num_compl.imag

40

bel _g_nil));

GC_MALLOC (sizeof
BEL_NUMBER;
BEL_NUMBER_COMPLEX;
real;

(xret));

imag;

23
24

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIONGF NAMBERS

return ret;

Number arithmetic

The following operations always happen between two numbers. We make sure they
are of compatible types to perform these operations, and then we return numbers of a
proper subtype afterwards.

1.

L O S

O 0 N AN R WD =

e e e e e e
0 N N W kR WD = O

Forward declarations

/+ Forward declarations #*/

Bel xbel_num_add (Bel *x, Bel xy);
Bel xbel_num_sub (Bel *x, Bel xy);
Bel xbel_num mul (Bel #*x, Bel xy);
Bel xbel num div(Bel xx, Bel xy);

Coercion

Let’s start with subtype coercion. Given a number and a number type flag, we
coerce that number to a new number of that subtype. Returns a new number, and
does not modify the old one.

Coercing a float to a fraction uses a naive approach: we multiply the number by
10 until it has no significant digits on the decimal part. We count the 1 multiplica-
tions we’ve made, and then we build a fraction where the numerator is a truncated,
converted to integer result, and the denominator is exactly ten to the power of i.

Belx
bel_num_coerce (Bel xnumber, BEL_NUMBER_TYPE type)
{
if (number->number.type == type)
return number;

switch (number->number.type) {
case BEL_NUMBER_INT:
{
switch (type) {
case BEL_NUMBER_FLOAT:
return bel mkfloat (
(double) number->number.num_int) ;
case BEIL_NUMBER_FRACTION:
return bel_mkfraction (
number,
bel_mkinteger(1l));
case BEIL_NUMBER_COMPLEX:

41

5.7. NIHMBERR 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

}

return bel_mkcomplex (
number,
bel_mkinteger (0));
default: break;
bi

break;
case BEL_NUMBER_FLOAT:

{

}

switch (type) {
case BEL_NUMBER_INT:
return bel_mkinteger (
(int64_t) trunc (number—>number.num_float)) ;
case BEL_NUMBER_FRACTION:
{

double num = number—->number.num_float;
double trun = trunc (num) ;
int 1 = 0;
while (num != trun) {
num *= 10.0;
trun = trunc (num) ;
i++;

}
return bel mkfraction
bel_mkinteger ((int64_t) num),
bel_mkinteger ((int64_t)pow (10, 1i)));
}
case BEL_NUMBER_COMPLEX:
return bel mkcomplex (number,
bel_mkfloat (0.0));
default: break;
}i

break;
case BEL_ NUMBER_FRACTION:

{

switch (type) {
case BEL_NUMBER_INT:
{
Bel *xfloat_res =
bel_num_div (
bel num coerce (
number—->number.num_frac.numer,

42

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIONGF NAMBERS

62 BEL_NUMBER_FLOAT),

63 bel num_coerce (

64 number->number.num_frac.denom,
65 BEL_NUMBER_FLOAT)) ;

66

67 return bel_mkinteger (

68 (int64_t) trunc(

69 float_res->number.num_float));
70 }

71 case BEL_NUMBER_FLOAT:

72 return bel_ num_div (

73 bel_num_coerce (

74 number—->number.num_frac.numer,
75 BEL_NUMBER_FLOAT),

76 bel _num_coerce (

77 number->number.num_frac.denom,
78 BEL_NUMBER_FLOAT)) ;

79 case BEIL_NUMBER_COMPLEX:

80 return bel_mkcomplex (number,

81 bel _mkinteger (0));
82 default: break;

83 bi

84 }

85 break;

86 case BEIL_NUMBER_COMPLEX:

87 {

88 switch (type) {

89 case BEL_NUMBER_TNT:

90 {

91 Bel xcoerced =

92 bel num_ coerce (

93 number->number.num_compl.real,
94 BEL_NUMBER_FLOAT) ;

95

96 return bel_mkinteger (

97 (int64_t) trunc(

98 coerced->number.num_float));
99 }

100 case BEL_NUMBER_FLOAT:

101 return bel num_coerce (

102 number->number.num_compl.real,

103 BEL_NUMBER_FLOAT) ;

104 case BEL_NUMBER_FRACTION:

43

5.7. NIHMBERR 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

105
106
107
108
109
110
111
112
113
114
115
116

O 0 N O R W N =

[I N N N T NS R N R N R O R T o T T e S
A L R W= O O ® 90 N R W= O

return bel_num_coerce (
number—->number.num_compl.real,
BEL_NUMBER_FRACTION) ;
default: break;
bi
}
break;
default: break;
}i

return number;

. Force same type

The following function takes two numbers, and makes sure they both have a sub-
type where both retain full information. Returns a pair containing both numbers.

Belx
bel_num mksametype (Bel *x, Bel xvy)
{
switch (x—>number.type) {
case BEL_NUMBER_INT:
switch (y—>number.type) {
case BEL_NUMBER_INT:
// int —-> int —-> int
return bel_mkpair(x, Vy);
case BEL_NUMBER_FLOAT:
// int —-> float -> float
return bel_mkpair (
bel_num_coerce (x, BEL_NUMBER_FLOAT),
v) i
case BEL_NUMBER_FRACTION:
// int —-> fraction —> fraction
return bel_mkpair(
bel_num_coerce (x, BEL_NUMBER_FRACTION),
V)i
case BEL_NUMBER_COMPLEX:
// int -> complex -> complex
return bel_mkpair (
bel_num_coerce(x, BEL_NUMBER_COMPLEX),
V)i
default: break;
}

44

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIONGF NAMBERS

27 break;

28 case BEL_NUMBER_FLOAT:

29 switch (y—>number.type) {

30 case BEL_NUMBER_INT:

31 // float -> int —-> float

32 // duplicate

33 return bel_ num_mksametype(y, Xx);
34 case BEL_NUMBER_FLOAT:

35 // float —-> float —> float

36 // same type

37 return bel_mkpair(x, v);

38 case BEL_NUMBER_FRACTION:

39 // float —> fraction —-> fraction
40 return bel_mkpair (

41 bel_num_coerce (x, BEL_NUMBER_FRACTION),
42 v)i

43 case BEIL_NUMBER_COMPLEX:

44 // float —-> complex —-> complex

45 return bel_mkpair (

46 bel_num_coerce (x, BEL_NUMBER_COMPLEX),
47 v) i

48 break;

49 default: break;

50 }

51 break;

52 case BEI_NUMBER_FRACTION:

53 switch (y—>number.type) {

54 case BEL_NUMBER_INT:

55 // fraction -> int -> int

56 // duplicate

57 return bel_num_mksametype(y, X);
58 case BEL_NUMBER_FLOAT:

59 // fraction —-> float —> fraction
60 // duplicate

61 return bel_ num_mksametype(y, Xx);
62 case BEIL_NUMBER_FRACTION:

63 // fraction —-> fraction —-> fraction
64 // same type

65 return bel_mkpair(x, y);

66 case BEIL_NUMBER_COMPLEX:

67 // fraction -> complex —> complex
68 return bel_mkpair(

69 bel_num_coerce (x, BEL_NUMBER_COMPLEX),

45

5.7. NIHMBERR 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

70 v) i

71 break;

72 default: break;

73 }

74 break;

75 case BEL_NUMBER_COMPLEX:

76 switch (y—>number.type) {

77 case BEIL_NUMBER_TINT:

78 // complex —> int —-> complex

79 // duplicate

80 return bel_num_mksametype(y, X);
81 case BEIL_NUMBER_FLOAT:

82 // complex —> float -> complex
83 // duplicate

84 return bel_num_mksametype(y, Xx);
85 case BEL_NUMBER_FRACTION:

86 // complex —> fraction -> complex
87 // duplicate

88 return bel_num_mksametype(y, X);
89 case BEL_NUMBER_COMPLEX:

90 // complex —> complex —> complex
91 // same type

92 return bel_mkpair(x, Vy);

93 default: break;

94 }

95 break;

96 default: break;

97 }

98

99 // Satisfy the compiler on event of no coercion
100 return bel mkpair(x, Vy);

101}

a) Helper macro for functions
The following macro does an inline conversion of Bel pointers to same

number subtype. Only the locals x and y will be affected; the original
pointed objects won’t be modified.

#define BEL _NUM _SAMETYPE (x, y)
{
Bel xp = bel_num mksametype(x, v);
x = bel _car(p);
y = bel_cdr(p);
}

— — — — —

(= Y R S

46

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIONGF NAMBERS

4. Checking for zero

O 0 N AN W R W N =

NN N —m —m m e e s s e e e
N o= O 0O 0NN N R WY = O

This function checks whether the argument is zero.

Comparing directly for zero on a double is not a really good idea. We’re doing a
naive approach here, but it is not completely guaranteed.

int
bel_num_zerop (Bel =*x)
{
switch (x—->number.type) {
case BEIL_NUMBER_TINT:
return (x->number.num_int == 0);
case BEIL_NUMBER_FLOAT:
return (x—>number.num_float == 0.0)
|| (x=>number.num_float == -0.0);
case BEL_NUMBER_FRACTION:
return bel_num_zerop (
x—>number.num_frac.numer) ;
case BEL_NUMBER_COMPLEX:
return (bel_num_zerop (
x—>number.num_compl.real))
&& (bel_num_zerop (
x—=>number.num_compl.imag)) ;

// This should not be reached...
return 0O;

}

5. Addition

O 0 N AN R WD =

10

12

The following function adds two arbitrary numbers.

Belx
bel_num_add(Bel #*x, Bel xy)
{

BEL_NUM_SAMETYPE (x, V);

switch (x—>number.type) {
case BEL_NUMBER_INT:
return bel_mkinteger (
x—>number.num_int + y->number.num_int);
case BEL_NUMBER_FLOAT:
return bel _mkfloat (
x—=>number.num_float + y->number.num_float);

47

5.7. NIHMBERR 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

O 0 N N N kR W N =

—_
(=]

case BEL_NUMBER_FRACTION:
{
Bel *new_numer x =
bel num _mul (x->number.num_frac
y—>number.num_frac.
Bel xnew_numer_y =
bel num mul (x—>number.num_frac.
y—>number.num_frac
Bel *new_denom =
bel num_mul (x—>number.num_frac
y—>number.num_frac.

return bel mkfraction (

.numer,

denom) ;

denom,

.numer) ;

.denom,

denom) ;

bel_num_add (new_numer_x, new_numer_y),

new_denom) ;

}
case BEL_NUMBER_COMPLEX:
return bel_mkcomplex (

bel_num_add (x->number.num_compl.
y—>number.num_compl.

bel_num_add (x—>number.num_compl

y—>number.num_compl.

default: break;
bi

return bel_mkerror (

bel_mkstring ("Error while adding ~a
bel_mkpair (x, bel_mkpair(y, bel_g n

Subtraction

real,
real),
.imag,
imag));

and ~a."),
i1)));

This function is identical to bel_num_add, however it subtracts two numbers.

Belx
bel_num_sub (Bel #*x, Bel xy)
{

BEL_NUM_SAMETYPE (x, V);

switch (x—>number.type) {
case BEL_NUMBER_INT:
return bel_mkinteger (

x—>number.num_int - y->number.num_int);

case BEL_NUMBER_FLOAT:

48

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIONGF NAMBERS

11

13
14
15
16
17
18

20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RN Y LS I SR

return bel_mkfloat (
x—>number.num_float -
case BEL_NUMBER_FRACTION:
{
Bel *new_numer x =
bel _num_mul (x—>number.
y—>number.
Bel xnew_numer_y =
bel _num_mul (x—>number.
y—>number.
Bel *new_denom =
bel num mul (x—>number.
y—>number.

return bel_mkfraction (
bel num sub (new_numer
new_denom) ;
}
case BEIL_NUMBER_COMPLEX:
return bel_mkcomplex (
bel num_sub (x—>number.
y—>number.
bel _num_sub (x—>number.
y—>number.
default: break;
}i

return bel mkerror (
bel _mkstring ("Error while
"and ~a."),

bel mkpair(x, bel_mkpair(y

. Multiplication

y—>number.num_=float);

num_frac.
num_frac.

numer,
denom) ;
num_frac.denom,
num_frac.numer) ;
denom,
denom) ;

num_frac.
num_frac.

X, new_numer_y),

real,
real),

num_compl.
num_compl.
num_compl .
.imag));

imag,
num_compl

subtracting ~a "

, bel g nil)));

This function multiplies two arbitrary numbers.

Bel~*
bel_num_mul (Bel =*x,

{

Bel xy)
BEL_NUM_SAMETYPE (x, V);

switch (x—>number.type) {
case BEL_NUMBER_INT:

49

5.7. NIHMBERR 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

8 return bel_mkinteger (

9 x—>number.num_int * y->number.num_int);

10 case BEL_NUMBER_FLOAT:

11 return bel_mkfloat (

12 x—>number.num_float * y->number.num_ float);
13 case BEL_NUMBER_FRACTION:

14 return bel mkfraction (

15 bel_num_mul (x->number.num_frac.numer,

16 y—>number.num_frac.numer),

17 bel _num_mul (x->number .num_frac.denom,

18 y—>number.num_~frac.denom)) ;

19 case BEL_NUMBER_COMPLEX:

20 {

21 Bel xreal =

22 bel_num_sub (

23 bel_num_mul (x—>number.num_compl.real,
24 y—>number.num_compl.real),
25 bel _num mul (x->number.num_compl.imag,
26 y—>number.num_compl.imag));
27 Bel ximag =

28 bel num_add (

29 bel_num_mul (x—>number.num_compl.real,
30 y—>number.num_compl.imag),
31 bel num mul (x->number.num_compl.imag,
32 y—>number.num_compl.real));
33

34 return bel_mkcomplex (real, imagqg);

35 }

36 break;

37 default: break;

38 i ¢

39

40 return bel mkerror (

41 bel _mkstring ("Error while multiplying "

42 "~a and ~a."),

43 bel_mkpair (x, bel_mkpair(y, bel_g nil)));

4}

8. Division

This function divides two arbitrary numbers. Notice that we check whether the
second argument is zero.

1 Belx
2 bel_num_div(Bel *x, Bel xy)

50

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATIONGF NAMBERS

3 A

4 BEL_NUM_SAMETYPE (x, V);

5

6 if (bel_num_zerop(y)) |

7 return bel mkerror (

8 bel _mkstring("Cannot divide by zero."),

9 bel g _nil);

10 }

11

12 switch (x—>number.type) {

13 case BEL_NUMBER_INT:

14 if (x->number.num_int % y->number.num_int) {

15 return bel_mkfraction(x, v);

16 } else {

17 return bel_mkinteger (

18 x—>number.num_int / y—->number.num_int) ;

19 }

20 case BEL_NUMBER_FLOAT:

21 return bel _mkfloat (

22 x—>number.num_float / y->number.num_float);

23 case BEIL_NUMBER_FRACTION:

24 return bel mkfraction (

25 bel _num_mul (x->number.num_frac.numer,

26 y—>number.num_~frac.denom),

27 bel num mul (x—>number.num_frac.denom,

28 y—>number.num_~frac.numer)) ;

29 case BEL_NUMBER_COMPLEX:

30 {

31 Bel xnumer = bel mkcomplex (

32 bel num_add (

33 bel_num mul (x->number.num_compl.real,

34 y—>number.num_compl.real),

35 bel num mul (x->number.num_compl.imag,

36 y—>number.num_compl.imag)),

37 bel _num_add(

38 bel num mul (

39 bel_mkinteger(-1),

40 bel_num mul (x->number.num_compl.real,
— y—>number.num_compl.imag)),

41 bel_num_mul (x->number.num_compl.imag,

42 y—>number.num_compl.real)));

43

44 Bel *denom = bel num_ add(

51

[S

5.8. ERRAORYR 5. ESSENTIAL STRUCTURES AND MANIPULATION OF DATA

45 bel_num_mul (y—>number.num_compl.real,
46 y—>number.num_compl.real),
47 bel_num_mul (y—->number.num_compl.imag,
48 y—>number.num_compl.imag));
49
50 return bel_mkfraction (numer, denom);
51 }
52 default: break;
53 }
54
55 return bel_mkerror (
56 bel_mkstring("Error while dividing "
57 "~a and ~a."),
58 bel_mkpair (x, bel_mkpair(y, bel_g nil)));
59 }

5.8 Errors

Bel does not have a formal specification on errors in primitives, other than saying
that there might be an err function which throws an error in the system.

I will therefore specify that, in Believe, an error is a literal (much like closures and
primitives) which obeys the pattern. ..

(lit err format . args)

...where 1it is the expected symbol for something that evaluates to itself, err
is the symbol which specifies that the object is an error, format is a Bel string which
contains a format for the given arguments, and args is a list of arguments which should
be parsed within the format.

For a first implementation, I intend to make the format specification follow loosely
the conventions of the format macro in Common Lisp, having ~a as the format for
any object and ~% as the format for a new line, for example.

Here’s how it could look like:

o]

> (err "Cannot use ~a on ~a.~%" '(1 2 3) square)
Error: Cannot use (1 2 3) on (lit clo nil (x) (* x X)).

However, since this is a detail which can be implemented in Bel itself, we’ll just go
ahead and say that there is a string format and a list of arguments.

Belx
bel_mkerror (Bel xformat, Bel xarglist)

{

return bel_mkpair(
bel_mksymbol ("1it"),

52

O 0 3

CHAPTER 5. ESSENTIAL STRUCTURES AND MANIPULATION (F8DAIRRORS

bel_mkpair (
bel_mksymbol ("err"),
bel_mkpair (format, arglist)));

53

O 00 N AN R WD =

—_ =
- o

CHAPTER

Axioms

To save memory, some of the following things will be globally defined.

6.1 Variables and constants

Define global symbols which can be used across the program. These symbols should
be used repeatedly, and that’s why they were already declared. See the bel_init
function to refer to their initialization.

void
bel init_ ax_ vars (void)

{

bel _g_nil = bel_mksymbol ("nil");
bel_g_t = bel_mksymbol ("t");
bel_g_o = bel _mksymbol ("o");
bel_g_apply = bel _mksymbol ("apply");

bel _g_prim
bel _g_clo

bel _mksymbol ("prim");
bel _mksymbol ("clo");

bel_g_primis not part of the axiom variables, but we’ll define it here since we’ll
need this symbol for generating primitives later.

6.2 List of all characters

First, we build an auxiliary function which converts an 8-bit number into a string,
where each character represents a bit.

55

O 0 N AN AW N~

e S
BN S I e

O 0 9 A R W N =

—_
(=]

11
12
13

6.2. LIST OF ALL CHARACTERS CHAPTER 6. AXIOMS

charx
bel conv_bits (uint8_t num)
{
char *str = GC_MALLOC_ATOMIC (9 + sizeof(*str));

uint8_t i;
for(i = 0; i < 8; i++) {

int is_bit_set = num & (1 << 1i);
str[7 - 1] = is_bit_set 2?2 '1I'" : '0';
}
str[8] = '"\0';

return str;

We build a list of all characters so that the specification gets happy. It will be stored
in the previously defined bel_g_chars global variable. This might seem unecessary
in the future, though.

The list is supposed to be built out of pairs, therefore we start by creating 255
Bel instances, representing list nodes; every node is supposed to hold the pointer to
aBel_pair. These pairs will be linked to one another: the cdr of the first Be1_pair
(again, contained inside a Be 1 instance) points to the second Be 1; the cdr of the second
Bel_pair (also contained on its Bel instance) points to the third Be 1, and so on. The
last cdr of the last Be1_pair, also enclosed on a Bel instance, contains the symbol
nil.

Now, we discuss what should be held in the car of each of these pairs. And that
would be other pairs, which will hold the actual information we desire. Each of these
secondary pairs is comprised of a character at its car, and a Bel string representing the
bits of the character as its cdr.

void
bel init_ax_chars (void)
{
// Create a vector of 255 1list nodes
Bel x*1list = GC_MALLOC (255 » sizeof(xlist));

size_t i;
for(i = 0; i < 255; i++) {
// Build a pair which holds the character information
Bel xpair = bel_mkpair (bel_mkchar ((Bel_char)i),
— bel_mkstring(bel_conv_bits(i)));
// Assign the car of a node to the current pair,
// set its cdr temporarily to nil
list[i] = bel_mkpair(pair, bel_g nil);

56

AN L AW N =

S S

CHAPTER 6. AXIOMS 6.3. ENVIRONMENT

// Assign each pair cdr to the pair on the front.
// Last pair should have a nil cdr still.
for(i = 0; 1 < 254; i++) {

list[i]->pair->cdr = list[i + 1];

// Hold reference to first element only
bel_g_chars = 1ist[0];

6.3 Environment

Any environment is nothing but a list of pairs, where each pair (var . val)
represents the binding of a specific symbol var to the value val.

We begin by creating a function which pushes, non-destructively, a new pair to any
environment. The result is the new environment.

Belx
bel_env_push (Bel xenv, Bel xvar, Bel =*val)
{
Bel xnew_pair = bel_mkpair (var, val);
return bel_mkpair (new_pair, env);

Notice that this non-destructive approach is important, since a lexical enviroment is
supposed to extend the enviroment it is called on — for example, the environment of a
function called from top-level is a list where the first elements are lexical bindings, and
(conceptually) the latter elements are bindings belonging to the global environment.

Now we register all our axioms to our global environment. This way, a lookup oper-
ation on the global scope will yield proper values.

First, we define a macro which uses bel_env_push to modify the globe envi-
ronment variable. This macro just takes a SYMSTR, turns it into a symbol, and generates
a new environment, which is then assigned to the global environment.

#define BEIL ENV_GLOBAI_PUSH (SYMSTR, VAL) \
(bel_g globe = \
bel_env_push (bel_g_globe, \

bel_ _mksymbol (SYMSTR), VAL))

Initializing the global environment involves pushing certain values to it. But the
dynamic and lexical environments are initialized to nil.

57

O 0 N AN AW N~

—_ =
- o

O 0 N AN W R W N =

(NS TN NS T NG T NS I N B NS I S R et e e i e
[N R N N = -E- RN B Y R R U N S R =)

6.3. ENVIRONMENT CHAPTER 6. AXIOMS

void
bel_init_ax_env (void)
{
bel_g_globe = bel_g nil;
bel_g_dynae bel_g_nil;
bel_g_scope bel_g nil; // TODO: is this really necessary?

BEL_ENV_GLOBAL_PUSH ("chars", bel_g_chars);
BEL_ENV_GLOBAL_PUSH("ins", bel_g_ins) ;
BEL_ENV_GLOBAL_PUSH ("outs", bel_g_outs);

Then, we create a lookup function. This function traverses an environment in linear
time, so it is not fast, but it does its job. A lookup process either returns the associated
value or returns nil.

Belx*
bel_env_lookup(Bel xenv, Bel xsym)
{
if(bel_nilp(env)) |
return bel_g nil;

if (!'bel_symbolp (sym)) {
return bel_mkerror (
bel_mkstring("Cannot perform lookup of ~a, "
"which is not a symbol."),
bel_mkpair (sym, bel_g nil));

Bel xitr = env;
while(!bel nilp(itr)) {
Bel xp = bel_car(itr);
if (bel_car(p)->type == BEL_SYMBOL
&& bel_car (p) —>sym == sym->sym) {
return bel_cdr (p);

itr = bel_cdr(itr);
}

return bel_g nil;

We also implement a proper lookup function which takes a lexical environment and
a symbol. The function traverses all environments in order (dynamic, lexical, global)

58

O N B W =

N N R WD~

CHAPTER 6. AXIOMS 6.3. ENVIRONMENT

to find the associated value of the given symbol. If the symbol is not found, returns an
error.

Bel=*
bel_lookup (Bel xlenv, Bel x*sym)
{

Bel =*value;

// Dynamic scope lookup
value = bel_env_lookup(bel_g_dynae, sym);
if(!'bel_nilp(value)) {

return value;

// Lexical scope lookup
value = bel_env_lookup(lenv, sym);
if(!'bel_nilp(value)) {

return value;

// Global scope lookup
value = bel_env_lookup(bel_g_globe, sym);
if(bel_nilp(value)) {
return bel mkerror (
bel mkstring("The symbol ~a 1is unbound."),
bel_mkpair (sym, bel_g_nil));

return value;

Another thing to do is enable assignment. We begin by creating a function which
finds a specific symbol on a specific environment and replaces its value by the given
one. On success, it returns the symbol; on failure, it returns nil. If the environment
is empty, we also return nil. Oh, we also don’t check if the given symbol is really a
symbol, since this is an internal function.

Bel=x*
bel_env_replace_val (Bel xenv, Bel xsym, Bel *new_val)

{
if (bel _nilp(env)) {
return bel_g nil;

59

10
11
12
13
14
15

17
18

O 00 N AN R WD =

[N N T N S NG R N S S e T T e T S S Sy
AW NN =) O VO 0NN N R W N = O

6.3. ENVIRONMENT CHAPTER 6. AXIOMS

Bel xitr = env;
while(!bel_nilp(itr)) {
Bel xp = bel_car (itr);
if (bel_idp(sym, bel_car(p))) {
p—>pair->cdr = new_val;
return sym;
}
itr = bel_cdr(itr);
}

return bel_g nil;

We also need a function which takes the reference to an environment and a symbol,
and unbinds that symbol from the value in the environment. This can be achieved by
simply iterating over the list and "unlinking" the relevant pair. We also don’t perform all
the checks on this internal function.

This function might modify the environment passed as reference by argument. We
only return a non-nil answer (which is the same environment, but modified) if and only
if the unbinding was successful.

Belx*
bel_env_unbind (Bel *xenv, Bel *sym)
{
if(bel_nilp(*xenv)) {
return bel_g nil;

// If first element is a match, return
// cdr of environment
if(bel_idp(bel_car(bel_car (*xenv)), sym)) {
*env = bel_ cdr (*xenv);
return bel_g t;

// Iterate looking at the next element always.
// If next element is a match, set current cdr
// to cdr of next element
Bel xitr = xenv;
while(!bel_nilp(bel_cdr(itr))) {
Bel xp = bel_car (bel_cdr(itr));
if (bel_idp(bel_car(p), sym)) {
itr->pair->cdr = p->pair->cdr;
return bel_g_t;

60

25
26
27
28
29
30
31

O 0 N AN W R W =

[S

CHAPTER 6. AXIOMS 6.3. ENVIRONMENT

itr = bel_cdr(itr);

// On no substitution, return nil
return bel_g nil;

The assignment operation itself respects the hierarchy of environments, to be de-

scribed in the next subsection. We attempt to make an assignment on the three kinds of
environment (lexical — given as argument —, dynamic and global). If the assignment fails
in any of these, the symbol is bound to the given new value, on the global environment.

Belx

bel_assign(Bel xlenv, Bel xsym, Bel xnew_val)

{

Bel *ret;

// Dynamic assignment
ret = bel_env_replace_val (bel_g_dynae, sym, new_val);
if(!'bel_nilp(ret)) return sym;

// Lexical assignment
ret = bel_env_replace_val (lenv, sym, new_val);
if(!'bel_nilp(ret)) return sym;

// Global assignment
ret = bel_env_replace_val (bel_g_globe, sym, new_val);
if(!'bel_nilp(ret)) return sym;

// When not assignment was made, we push a global value
bel_g_globe = bel_env_push(bel_g_globe, sym, new_val);
return sym;

We proceed by the same principle for the actual unbinding function: we respect the

hierarchy of environments. Like bel env_unbind, this function might modify the
passed environment, and that is why we take a reference to it.

Belx

bel_unbind(Bel *xlenv, Bel =*sym)

{

Bel =xans;

61

6.3. ENVIRONMENT CHAPTER 6. AXIOMS

// Dynamic unbinding
ans = bel_env_unbind (&bel_g_dynae, sym);
if(!'bel_nilp(ans)) {

return sym;

// Lexical unbinding
ans = bel_env_unbind(lenv, sym);
if(!'bel_nilp(ans)) {

return sym;

// Global unbinding
ans = bel_env_unbind (&bel_g_globe, sym);
if(!'bel_nilp(ans)) {

return sym;

// On no unbinding, return nil
return bel_g nil;

Types and hierarchy of environments

There are three kinds of environments in Bel: Global, Lexical and Dynamic. The
global environment (bel_g_globe, globe) contains symbols which are always vis-
ible from all scopes. This environment lives for the lifetime of the interpreter.

The lexical environment (bel_g_scope, scope) contains symbols which are vis-
ible only inside the current scope, and lives for a short period of time, linked to its scope.
It is the environment captured by closures, and also the environment created when a clo-
sure is applied (as a specific symbol is bound to evaluate a closure’s body).

The dynamic environment (bel_g_dynae) is like the global environment on its
regards to access (symbols are visible to the whole application). However, the dynamic
environment lives for a short period of time, linked to the scope it is used.

In Bel, any symbol lookup is performed by traversing the environments in the fol-
lowing order: Dynamic, Lexical, Global.

Environment extension and capturing

Being a sequential list of pairs, where the values are pushed to their top, environ-
ments (such as the lexical) can share symbols. For example, suppose the following clo-
sure called orig-fun.

(def orig-fun (x y)

62

CHAPTER 6. AXIOMS 6.4. LITERALS

(join (new—-fun x) vy))

Suppose further that this closure is applied to the symbols foo and bar. They are
then bound respectively to x and y. The closure’s lexical environment during application
would look like this:

((y . bar) (x . foo))
Suppose also that the closure new—fun is defined like this:

(def new—fun (x)
(id x 'foo))

When new-fun is applied inside orig—-fun, it captures orig—fun’s lexical en-
vironment. Additionally, new—fun binds foo (associated with the original x symbol)
to a new x symbol. So new—fun’s lexical environment looks like this:

((x . foo) (y . bar) (x . foo))

Since the environment stacks up definitions, a lookup process begins at top (here
displayed as the leftmost pair) and finds the first binding of the requested symbol that it
can find. So in new—-fun, the value associated to the symbol x can only be the first pair
represented above; however, after the evaluation of new—fun, back at orig-fun, the
associated value of x would be the last pair.

Another interesting fact is that, if new—fun were to make a blind assignment
to y after being called inside orig—fun, y’s associated value would be changed in
orig-fun’s lexical environment, so the new value of y would be seen not only at
new-fun; it would still be different when we returned to orig-fun.

If new—fun were called from outside orig—-fun (more specifically, at top level),
such assignment to y would create a new binding on the global environment, effectively
creating a new global variable.

6.4 Literals

Although literals have already been seen on error implementation, but here we reuse
the concept to generate literals that should exist on the global environment.

A literal 1s a list, where the first element is the symbol 1it. Literals are described
like persistent quotes, since evaluating a quoted form strips away the quoting. A literal
is what should be used to describe things that evaluate to themselves.

Literals follow the form (1it . rest), where 1it is a symbol, and rest is a
proper list of things that should be treated as a literal.

Primitives and functions are internally described as literals.

The first thing to do is create a tool for generating a literal; in general, what it does
is create a pair, where the car is the symbol 11t, and the cdr is anything that should be
treated as a literal.

63

O 0 N AN AW~

e S
A~ W0 = O

~N O L BN =

(= N R O R S

6.4. LITERALS CHAPTER 6. AXIOMS

Belx*
bel_mkliteral (Bel *rest)
{
if(!'bel_proper_list_p(rest)) {
return bel mkerror (
bel _mkstring("The object ~a is not a "
"oroper 1list to be turned "
"into a literal."),
bel_mkpair (rest, bel_g nil));

return bel_mkpair (bel_mksymbol ("1it"),
rest) ;

Primitives

As stated above, primitives are represented as literals, since they evaluate to them-
selves. We start by defining a tool to create a certain primitive; it should be noted that,
since primitives are internal to the Bel implementation, this function does not check for
errors.

A primitive has the form (1it prim name), where 1it and prim are constant
symbols, and name is a symbol for the primitive name.

Belx
bel_mkprim(Bel %sym)
{
return bel mkliteral (
bel_mkpair (bel_g_prim,
bel_mkpair (sym, bel_g nil)));

The next definition is a macro where, given an environment env and a C string
literal x, it generates a primitive for x and pushes it to the enviroment env.

#define BEIL_REGISTER_PRIM(env, Xx)
{
Bel xsym = bel_mksymbol (x);
env = bel_env_push(env, sym,
bel_mkprim(sym));

— - — —

}

Then we create a function where, given an environment env, it registers all Bel
primitives on it, creating a new environment which is returned. Notice that this new
environment is in fact making use of the original one.

64

O 0 N AN N R WD =

CHAPTER 6. AXIOMS

6.4. LITERALS

Bel=x*

bel_gen_primitives (Bel xenv)

{

// Primitive functions
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,

// Primitive operators
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,

// Other primitives
BEL_REGISTER_PRIM (env,
BEL_REGISTER_PRIM (env,

return env;

"id");
"join");
"car");
"Cdr"> ,.
"type");
"xar") ;
"xdr");
"sym") ;
"nom") ;
"wrb") ;
"rdb") ;
"ops") ;
"cls");
"stat");
"coin");
"sys") ;
")
"=");
") ;
"/
"<
ne=") ;
">m)
n>=n)
"=");
"err");
"ge") ;

The last step is to have a function which pushes these primitives automatically to
the globe environment.

void
bel_init_ax_primitives|()

65

PSS SO SC R

6.4. LITERALS CHAPTER 6. AXIOMS

bel_g_globe = bel_gen_primitives (bel_g_globe);

Closures

Creating a closure is very straightforward. We take an environment and a list. Such
list must have two elements, where the first is a lambda list, and the second is the body
of the function.

Belx
bel_mkclosure (Bel *lenv, Bel xrest)
{
return bel mkliteral (
bel_mkpair(bel_g_clo,
bel_mkpair (lenv, rest)));

66

N N R WD~

CHAPTER
Printing

The following functions are used to print a certain object on standard output.

7.1 Forward declarations

We forward declare the bel print function since printing pairs calls it for the
pairs’ parts.

void bel_print (Belx);
void bel_print_closure (Belx);
void bel_print_primitive (Belx);

7.2 Printing pairs

The first function is a specialization for printing pairs in general. This function
should also handle the printing of lists gracefully.

A closure is also a pair (a literal, to be more precise), but it has its own printing
function, which we invoke if needed.

Similarly, a primitive is a primitive function whose body and environment are not
explicit to the Bel language, so we also add a way to print them.

void
bel_print_pair (Bel =*ob3j)
{
if (bel_nilp(obj)) return;

Bel xitr = obj;

67

~N N A WD~

7.2. PRINTING PAIRS

CHAPTER 7. PRINTING

// Handle printing closures

// and primitives

if (bel_closurep (obj)) {
bel_print_closure(obj);
return;

} else if(bel_primitivep(obj)) {
bel_print_primitive (obj);
return;

putchar (' (");
while(!bel_nilp(itr)) {
bel_car (itr);
bel _cdr (itr);

Bel *car =
Bel *cdr =

bel_print (car);

if (bel_nilp(cdr)) {

break;
} else if (cdr->type != BEL_PAIR)
putchar (" '");
putchar('.");
putchar (' '");
bel_print (cdr);
break;
}
putchar (' '");
itr = cdr;

}
putchar (') ") ;

Printing functions

void

bel _print_closure (Bel *obj)

{

Bel *lambda_list =

{

We also add a general way for printing closures. This also turns the closure printing
safer, since we do not print the associated environment.

bel_car (bel_cdr (bel_cdr (bel_cdr(obij))));

printf ("#<function (fn ");
if(bel_nilp(lambda_list)) {

68

N N I LY B N N R S

O 00 N AN W R~ WD =

CHAPTER 7. PRINTING 7.3. PRINTING STRINGS

printf("()");
} else bel_print_pair(lambda_list);
printf (") {%p}>", (voidx)obj);

Another useful function to have is a way to print primitives, which are Bel functions
that work like axioms, defined through C code.

void
bel print_primitive (Bel =xobj)
{
Bel xname = bel_car (bel_cdr (bel_cdr (obj)));
printf ("#<function (prim ");
bel_print (name);
putchar (') ") ;
putchar ('>");

7.3 Printing strings

A string is a very specific type of list: it is a proper list comprised only of characters.
However, this function is not supposed to test for the object’s type; instead, it must be
called when we are certain that the object in question is a string.

void
bel_print_string(Bel =xobj)
{
putchar ('\"'");
Bel xitr = obj;
while(!bel _nilp(itr)) {
Bel _char ¢ = bel_car (itr)->chr;

switch (c) {

case '\a': printf ("\\bel"); break;
default: putchar (c) ; break;
}

itr = bel_cdr(itr);

}
putchar ('\"");

69

O 0 N AN W R W N =

[T S
A WD = O

7.4. PRINTING STREAMS CHAPTER 7. PRINTING

7.4 Printing streams

Printing a stream involves printing something that cannot be read back in, so it can
be considered merely aestethic. I made an option of either printing that it is closed, or
printing its status along with the raw pointer.

void
bel _print_stream(Bel =x0bj)
{

printf ("#<stream :status ");

if (obj->stream.status == BEL_STREAM_CLOSED) {
printf ("closed>");

} else {

switch (obj->stream.status) {

case BEL_STREAM READ: printf("input "); break;
case BEL_STREAM WRITE: printf ("output "); break;
default: printf ("unknown "); break;
}

printf ("{0x%081x}>", (uint64_t)obj->stream.raw_stream);

7.5 Printing numbers

We develop a function to print an arbitrary number. The function takes the number
itself and a parameter which tells whether the sign should be explicit (the reason for that
will be evident soon).

To print an integer, the only thing to do is to printa 1ong int. We prepend it with
a plus if the number is positive and the explicit sign flag is on.

To print a float, we print a double with reduced notation. If the number is round,
we append . 0 to it. We also follow the same rule of integers when prepending the plus
sign.

A fraction is a pair of two numbers. We just enclose them in a textual representation
like # (£ number), where number is the numerator and the denominator separated
by a slash. These two components can also be numbers of any kind, so we print them
recursively, without forcing the plus sign.

A complex 1s also a pair of two numbers of any kind, where the first number is the
real part and the second number is the imaginary part, which multiplies i. So we enclose
it in a textual representation like # (¢ number), where number is a complex number
in the form R+A1i. In this form, R is the real part, printed as any Bel number; A is the
imaginary part, but we force it to print its sign on screen, and then we prepend it with an
i. To force A’s sign to appear, we call this function recursively, with the force_sign
flag active.

70

O 0 N AN N R WD =

CHAPTER 7. PRINTING 7.6. GENERIC PRINTING

void
bel_print_number (Bel xnum, int force_sign)
{
switch (num->number.type) {
case BEL_NUMBER_INT:
if (force_sign && (num—->number.num_int >= 0))
putchar ('+");
printf ("%1d", num->number.num_int) ;
break;
case BEL_NUMBER_FLOAT:
if (force_sign && (num->number.num_float >= 0.0))
putchar ('+");
printf ("%$1g", num->number.num_float);
// Trailing .0 on round number
if (num->number.num_float
== trunc (num—->number.num_float)) {
printf(".0");
}
break;
case BEL_NUMBER_FRACTION:
printf ("#(£f ");
bel_print_number (num->number.num_frac.numer, 0);
putchar('/");
bel_print_number (num->number.num_frac.denom, 0);
putchar (') ") ;
break;
case BEL_NUMBER_COMPLEX:
printf ("#(c ");
bel_print_number (num->number.num_frac.numer, 0);
bel_print_number (num->number.num_frac.denom, 1);
printf ("i)");
break;
default:
printf ("#<\2\?2\2>");
break;

7.6 Generic printing

The next function handles the printing of any data type. Notice that it does not

automatically print a newline character.

71

O 0 N AN AW N~

(O S N N N S T N L O L T S T N R N e R
S O 0 9 AN R WD = O OV 0NN R WD —= O

7.6. GENERIC PRINTING

CHAPTER 7. PRINTING

void
bel_print (Bel xo0bij)
{
switch (obj—>type)
case BEL_ SYMBOL:
printf ("%s",
break;
case BEL_PATR:

{

g_sym_table.tbl[obj->sym]);

if (!bel_stringp(obij)) {
bel_print_pair (obj);

} else {

bel_print_string(obj);

}
break;
case BEL_CHAR:

if (obj—>chr == '\a')
printf ("\\bel"); // There is no Bel without \bel
else printf ("\\%c", obj->chr);

break;
case BEL_STREAM:

bel_print_stream(obj);

break;
case BEL_NUMBER:

bel_print_number (obj, 0);

break;
default:

printf ("#<\2\2\?>"); // wat

break;
bi

72

AN L AW N =

[N S

CHAPTER

Evaluator

The evaluator is the most crucial part of the Bel system. We follow the pattern of
the metacircular evaluator: by having two functions, eval and apply, we make them
call themselves mutually, equipping them with auxiliary functions and special forms to
produce a working interpreter for a Lisp language.

8.1 Forward declarations

These declarations specify the most crucial functions of the interpreter. Forward
declarations are important for the mutual calling part.

/* Forward declarations */

Bel
Bel
Bel
Bel
Bel

*bel_eval (Bel *exp, Bel xlenv);

*bel_apply (Bel *proc, Bel xargs);

*bel _evlist (Bel xelist, Bel =*lenv);
*bel_apply_primop (Bel *sym, Bel xargs);
*bel_bind(Bel xvars, Bel =*xvals, Bel =*lenv);

The following forward declarations are related to special forms on the evaluator.
These special forms are handled outside of the eval function to make it more succinct.

/% Forward declarations =*/

Bel
Bel
Bel
Bel

*bel_special_1if (Bel xexp, Bel xlenv);
*bel_special_qgquote (Bel xexp, Bel xlenv);
*bel_special_dyn(Bel xrest, Bel xlenv);
*bel_special_set (Bel xclauses, Bel xlenv);

73

O 0 N N B W =

L L W NN NN NN N = e = e e e e e
N = O 0 00NN N R WD = O OV 00NN R WD = O

8.2. THE EVAL FUNCTION CHAPTER 8. EVALUATOR

8.2 The eval function

bel_eval is the evaluation function. The objective is to take a particular expres-
sion, identify what it is (whether it is a special form or a simple function application),
and dispatch it accordingly.

When a simple application is performed, we take a list and consider that the first
element is the symbol that the function is bound to. So we evaluate every element of the
list, including the function, and then we apply the closure (produced by evaluation of
the function) to the rest of the evaluated elements, which will be passed as arguments.

It is also important to notice that the closure captures the lexical environment where
it is evaluated.

Belx*
bel_eval (Bel xexp, Bel xlenv)

{
/+ #ifdef BEL DEBUG #*/

/% printf("eval> "); */
J * bel print (exp); */
/% putchar (10); */

/% #endif =/

// numbers eval to themselves
if (bel_numberp (exp))
return exp;

// symbol
if (bel_symbolp (exp)) {
// If one of axiom symbols, eval to itself
if (bel_idp(exp, bel g nil)
|| bel _idp(exp, bel_g_t)
| | bel_idp (exp, bel_g_ o)
| | bel_idp(exp, bel_g_apply))
return exp;
// else lookup on table
return bel_lookup(lenv, exp);

// quote
if (bel_qguotep (exp))
return bel_special_quote (exp, lenv);

// 1it
else if (bel_literalp(exp))
return exp; // eval to itself

74

33
34
35
36
37
38
39
40
41
)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

CHAPTER 8. EVALUATOR 8.2. THE EVAL FUNCTION

// string
else if (bel_stringp (exp))
return exp; // eval to itself

// Special forms
else if (bel_proper_list_p(exp)) {
// fn: closure
if (bel_idp(bel_car(exp), bel _mksymbol ("fn")))
return bel_mkclosure(lenv, bel_cdr (exp))

14

// 1if
if (bel_idp(bel_car(exp), bel_mksymbol ("if")))
return bel_special_if (exp, lenv);

// TODO:
// apply
// where (not straightforward)

// dyn
if(bel_idp(bel_car (exp), bel_mksymbol ("dyn")))
return bel_special_dyn(bel_cdr (exp), lenv);

// after

// set (global binding)
if (bel_idp(bel_car (exp), bel _mksymbol ("set")))
return bel_special_set (bel_cdr (exp), lenv);

// ccc (call/cc)
// thread (does not share dynamic binding)

// otherwise it 1is the case of an application
return bel_apply (bel_eval (bel_car (exp), lenv),
bel_evlist (bel_cdr (exp), lenv));

return bel mkerror (
bel _mkstring("~a is not a proper list "
"for the application of "
"a function."),
bel _mkpair (exp, bel_g nil));

75

O 00 N AN R WD =

L W W W W W NN NN NN NN NN = e s e e e e e
L A W DD = O O 0 3 & L B LW D = O© O 0 I & L b LW DD — O

8.3. THE APPLY FUNCTION CHAPTER 8. EVALUATOR

8.3 The apply function

bel_apply is the application function. It takes a certain function and applies to
the list of evaluated arguments. A function can be a primitive, but can also be a literal
closure.

To apply a closure, we bind all arguments to the closure’s formal parameters, cre-
ating an extended lexical environment; then we proceed to evaluate the closure’s body
under that new lexical environment.

Belx
bel_apply (Bel xfun, Bel xargs)

{
/* #ifdef BEI_DEBUG */

/ * printf ("apply> "); */
/ * bel_print (fun); */

/% printf (" => "); */

J * bel_print (args); =*/
/% putchar (10); */

/* #endif =/

// Check for errors on fun
if (bel_errorp(fun)) {
return fun;

// Primitive procedure
else if (bel_primitivep (fun)) {
return bel_apply_primop (
bel_car (bel cdr (bel_cdr(fun))),
args) ;

// Closure
else if (bel_closurep(fun)) {
Bel xlenv =
bel_car (
bel_cdr (bel_cdr (fun)));
Bel xlambda_list =
bel car(
bel_cdr (bel_cdr (bel_cdr(fun))));
Bel xbody =
bel car(
bel_cdr (bel_cdr (bel_cdr (
bel_cdr (fun)))));

76

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52
53
54
55
56
57

CHAPTER 8. EVALUATOR

8.4. AUXILIARY FUNCTIONS

// Generate a new environment with the
// arguments bound in it
Bel *new_env = bel_bind(lambda_list,
args,
lenv);

if (bel_errorp(new_env)) {

return new_env;

// Evaluate body on the new environment
return bel_eval (body, new_env);

// Error
else {

return bel mkerror (
bel_mkstring("~a is not a procedure"),
bel mkpair (fun, bel_g nil));

8.4 Auxiliary functions

The following functions are also essential to the evaluator, but have a more sec-
ondary role, such as handling special forms, applying primitive operators, and other
kinds of things.

Evaluating special forms

Some special forms require greater attention, and so it is a little better to give them
their own function.

1.

B O S

(quote x)

In Lisp languages, quoting an atom, like the expression ’ a, translates to an ex-
pression such as (quote a), which will then be evaluated by returning only the
symbol a.

Belx
bel_special_qgquote (Bel =*exp, Bel xlenv)

uint64_t len = bel_length (exp);

77

8.4. AUXILIARY FUNCTIONS CHAPTER 8. EVALUATOR

O 0 9 N W

10
11
12
13

2.

O 0 N9 O W B WD =

—_— = e e
W N = O

if(len != 2) {
return bel_mkerror (
bel_mkstring ("Malformed quote: can only "
"quote one object."),
bel _g_nil);

return bel_car (bel_cdr (exp));

}

(1f . clauses)

The conditional if takes any number of clauses (at least two), and does their
evaluation in pairs of clauses (not to be confused with the pair data type).

Suppose that we have a conditional such as
(if condl predl cond2 pred2)

We evaluate cond1. If its result is not ni 1, we return the evaluation of predl.

If evaluation of condl is nil, however, we don’t evaluate predl; we proceed
to test the evaluation of cond2. If cond?2 yields a non-ni1l result, however, we
return the evaluation of pred2.

There can also be a different scenario, where the number of clauses is odd, like
(1f condl predl cond2 pred2 altern)

If, during evaluation, cond2 did not yield a non-ni1l result, then pred2 would
be skipped; however, as there are no more pairs, but only the a single altern
clause, it will be evaluated and its results will be returned, as an alternative.

Belx
bel_special if (Bel *exp, Bel xlenv)
{

Bel xbody
uint64_t length

bel_cdr (exp) ;
bel_length (body) ;

if (length < 2) {
return bel_mkerror (
bel_mkstring ("if statement must have at "
"least one predicate with "
"a consequent."),
bel _g_nil);

78

CHAPTER 8. EVALUATOR 8.4. AUXILIARY FUNCTIONS

14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34

3.

O 0 N AN R WD =

—_ = e e e
A LoD = O

Bel xpredicate;
Bel xconsequent;

while (1) {
predicate = bel_car (body);
consequent = bel_car (bel_cdr (body));

body = bel_cdr (bel_cdr (body));

// nil consequent = return—-eval predicate
if (bel_nilp(consequent)) {
return bel_eval (predicate, lenv);

if(!bel_nilp(bel_eval (predicate, lenv))) {
return bel_ eval (consequent, lenv);

return bel_g nil;

(dyn v x vy)

The special form dyn evaluates x and dynamically binds it to symbol v. After
this dynamic binding, it then evaluates y, and finally unbinds x.

This implementation of dyn is not thread-happy yet, since every thread is sup-
posed to have its dynamic bindings, which are not shared. This, however, is some-
thing that will be solved later.

Belx
bel_special_dyn (Bel xrest, Bel =xlenv)
{

uint64_t len = bel_length(rest);

if(len > 3) {
return bel_mkerror (
bel_mkstring("Too many arguments on "
"dynamic binding."),
bel _g_nil);

Bel xsym = bel_car (rest);
bel_car (bel_cdr (rest));

Bel *x

79

8.4. AUXILIARY FUNCTIONS CHAPTER 8. EVALUATOR

15 Bel xy = bel_car (bel_cdr (bel_cdr(rest)));

16

17 if (!bel_symbolp(sym)) {

18 return bel_mkerror (

19 bel_mkstring ("Dynamic bindings can only "
20 "be attributed to symbols."),
21 bel _g_nil);

22 }

23

24 if (bel_nilp(sym)) {

25 return bel_mkerror (

26 bel_mkstring("Cannot bind value to nil."),
27 bel _g_nil);

28 }

30 /% #ifdef BEIL DEBUG x/

31 /* printf ("dynb> "); */
32 /* bel_print (sym); #*/

33 /* printf (" := "); */

34 /% bel_print (x); */

35 /% putchar(10); */

36 /* #endif */

38 bel_g_dynae =
39 bel_env_push(bel_ g dynae,
40 sym,
41 bel_eval (x, lenv));
42
43 Bel xret = bel_eval (y, lenv);
44 bel_env_unbind(&bel_g_dynae, sym);
45
46 return ret;
47 '}
4. (set . rest)
This form works with pairs in an expression like (set sl vl s2 v2...) in

such a way that vn is evaluated and globally bound to sn.
This is the form behind definitions of functions, for example.

For the global assignments to happen properly, we evaluate all expressions before
binding. This does not prevent side effects on the evaluation of values being as-
signed, but the values will only be assigned if no evaluation error happened. Plus,
assignment can only be done to non nil symbols.

80

CHAPTER 8. EVALUATOR

8.4. AUXILIARY FUNCTIONS

O 0 N AN R WD =

AR W W W W W LW W W W N RN NN NN R = = = = = = = =
—_ O O o N A kR WY = O OV NN R WY = O LV NN N R WD = O

A
S

Bel~
bel_ special_set (Bel xclauses, Bel xlenv)

{

/%
/%
/%
/%
/%
/%
/%

Bel xsyms = bel_g_nil;
Bel xvals = bel_g_nil;

Bel xitr = clauses;
while (!bel_nilp(itr)) {
Bel xsym = bel_car (itr);

if(!bel_symbolp(sym) || bel nilp(sym)) {
return bel_mkerror (
bel_mkstring ("Global bindings can only "
"be attributed to valid "
"symbols."),
bel_g_nil);

Bel *val =
bel_eval (bel_car (bel_cdr (itr)),
lenv) ;

if (bel_errorp(val)) {

return val;

syms = bel_mkpair (sym, syms);
vals bel mkpair(val, wvals);

itr = bel_cdr (bel_cdr (itr));

while (!bel_nilp(syms)) {
#ifdef BEI_DEBUG */
printf("glob> "); x/
bel_ print (bel_car (syms)); */
printf(" := "); *x/
bel_print (bel_car(vals)); */
putchar (10); */
#endif */
bel_assign(bel_g nil, bel_car (syms),
— bel_car(vals));
syms = bel_cdr (syms) ;

81

O 0 N A K BN =

1 T G N N S N S S S S T
LW P = O OV 0 NN N R WD = O

8.4. AUXILIARY FUNCTIONS

CHAPTER 8. EVALUATOR

43
44
45
46
47

vals = bel_cdr(vals);

return bel_g nil;

Evaluate a list of values

bel_evlist evaluates a list of expressions under the given lexical environment.

This function should only be called for a proper list.

Belx*

bel _evlist (Bel *elist, Bel =xlenv)

{

if(bel_nilp(elist)) {
return bel_g nil;

Bel *eval_ result =

bel_eval (bel_car (elist), lenv);
if (bel_errorp(eval_result)) {

return eval_result;
Bel *ev_rest =

bel_evlist (bel_cdr(elist), lenv);
if (bel_errorp(ev_rest)) {

return ev_rest;

return bel_mkpair(eval_result, ev_rest);

Apply a primitive operator to a list

Applying a primitive to a list involves checking for the symbol which specifies it

and dispatching the arguments to a specific function which checks arity and performs
the job.

1. Forward declarations

These forward declarations are related to the actual implementation of primitive
functions in the Bel environment. We forward-declare them so that we can define

82

CHAPTER 8. EVALUATOR

8.4. AUXILIARY FUNCTIONS

O 0 N AN N R WD =

[O R T N R S e N e S R S R O O o o e T e e e
N o= O O X NN R W= O O YR W N = O

[\9)

a function which redirects to each one of them, and after that we give their proper

definitions.

/* Forward declarations of primitive functions #*/

Bel xbel _prim_id(Bel =xargs);
Bel xbel_prim_join(Bel *args);

Bel xbel_ prim_car (Bel
Bel xbel_ prim_cdr (Bel

Bel *bel_prim_type (Bel xarg

Bel xbel_ prim_xar (Bel
Bel xbel_prim_xdr (Bel
Bel *bel_prim_sym(Bel
Bel xbel_prim_nom(Bel
Bel xbel_prim_wrb (Bel
Bel xbel_prim_rdb (Bel
Bel *bel_prim_ops (Bel
Bel xbel_prim_cls (Bel

—~ o~ o~ o~ o~ —~

Bel xbel_prim_stat (Bel =xarg
Bel xbel_prim_coin(Bel =*args

Bel *bel_prim_sys (Bel

/* Forward declarations of primitive operators #*/

Bel xbel prim_add(Bel
Bel xbel_prim_sub (Bel
Bel xbel_ prim_mul (Bel
Bel xbel_prim_div (Bel

*args) ;
*args

.

) ;

4

4

)
S
)
)
) ;
*args) ;
).
)
)
)
S

4

4

’

.

4

)i
)
*args) ;

*args) ;
*args) ;
*args) ;
*args) ;

//Bel xbel_prim less (Bel #*args);
//Bel xbel_ prim leq(Bel =*args);
//Bel +bel_prim _great (Bel #*args);
//Bel xbel_ prim geq(Bel =*args);

//Bel xbel_prim eq(Bel

*args);

/# Forward declarations of other primitives #*/

Bel xbel prim_err (Bel

*args) ;

Bel xbel_prim_gc (Bel xargs);

. Applying primitive operations

The bel_apply_primop function is the function which applies a primitive
operation, identified as a symbol, to a list of evaluated values. It is important to
know that this function does not usually do the job; instead, we just dispatch the
arguments to a function which will perform as needed.

The macro bel_is_prim compares whether sym is the symbol which repre-

sents the literal 1it.

8.4. AUXILIARY FUNCTIONS CHAPTER 8. EVALUATOR

1 #define bel_is_prim(sym, 1it) \
2 (bel_idp (sym, bel_mksymbol (1it)))

The macro bel_unimplemented takes the symbol sym for a primitive func-
tion and generates an error, stating that the function has not been implemented.
This is important while the interpreter is under development.

1 #define bel unimplemented (sym) \
2 bel _mkerror(\
3 bel_mkstring("~a is not Iimplemented."), \
4 bel_mkpair(sym, bel_g nil))

bel_apply_primop is the crucial function for the operations described above.
It enumerates the core functions and dispatches the arguments accordingly.

Notice that an attempt to apply a primitive operation which does not exist results
in error.

Belx
bel_apply_primop (Bel *sym, Bel xargs)
{
// Primitive functions
if(bel_is_prim(sym, "id"))
return bel_prim_id(args);
else if(bel_is_prim(sym, "join"))
return bel_prim_join (args);
else if(bel_is_prim(sym, "car"))
return bel_prim_car (args);
else if(bel_is_prim(sym, "cdr"))
return bel prim_cdr (args);
else if (bel_is_prim(sym, "type"))
return bel_prim_type (args);
else if(bel_is_prim(sym, "xar"))
return bel_prim_xar (args);
else if (bel_is_prim(sym, "xdr"))
return bel_prim_xdr (args);
else if (bel_is_prim(sym, "sym"))
return bel_prim_sym(args);
else if (bel_is_prim(sym, "nom"))
return bel_prim_nom(args);
else if (bel_is_prim(sym, "wrb"))
return bel_prim_wrb (args);
else if (bel_is_prim(sym, "rdb"))
return bel_prim_rdb(args);
else if (bel_is_prim(sym, "ops"))

O 00 N O W R W N =

[S N R N e O S T T S B S e S S
N N LR WD = O 0 0NN R W NN = O

84

CHAPTER 8. EVALUATOR

8.4. AUXILIARY FUNCTIONS

28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

return bel_prim_ops(args);
else if (bel_is_prim(sym,
return bel_prim_cls(args);
else if (bel_is_prim(sym,

else if (bel_is_prim(sym,

else if (bel_is_prim(sym,
return bel_prim_sys(args);

// Primitive operators
else if (bel_is_prim(sym, "+"))
return bel_prim_ add(args),
else if (bel_is_prim(sym, -m)
return bel_prim_sub (args)
else if (bel_is_prim(sym, "x")
)i
)
)
)

~ ~e

return bel_prim_mul (args
else if(bel_is_prim(sym, "/"
return bel_prim_div (args
else if (bel_is_prim(sym, "<"

)

)

"ClS"))

"stat"))
return bel_prim_stat (args);
"coin"))
return bel_prim_coin(args);
"sys"))

return bel_unimplemented (sym) ;

else if (bel_is_prim(sym,

0= U}

return bel_unimplemented (sym) ;

else if (bel_is_prim(sym, ">"))

return bel_unimplemented (sym) ;

else if (bel _is_prim(sym,

n">="))

return bel_unimplemented (sym) ;

else if (bel_ls_prim (Sym, "="))

return bel_unimplemented (sym) ;

// Other primitives

else if (bel_is_prim(sym,
return bel_prim_err (args);

else if (bel_is_prim(sym,
return bel_prim_gc(args);

"gc "))

"err n))

// Otherwise, unknown application operation

else {
return bel_mkerror (

bel mkstring("Unknown primitive ~a."),
bel_mkpair (sym, bel_g_nil));

85

8.4. AUXILIARY FUNCTIONS

CHAPTER 8. EVALUATOR

3. Maximum arity check

The following macro is a helper for checking the arity of a specific function. Pass-
ing the arguments list and the number of desired arguments performs such a check.
If the arity is greater than the given number, it returns an error complaining about

1t.

Notice that this macro expects two things: to be called inside a function that re-
turns a Be 1 « type, and that the arguments themselves are a proper list.

It is also important to notice that Bel specifies that, when handling primitives,
missing arguments default to ni 1, therefore passing less arguments than expected
is not considered an error; since collecting arguments is handled by bel_car
and bel_cdr, the missing arguments are guaranteed to be ni1 when retrieval is

attempted.

(o T e Y B S S

#define BEI_CHECK_MAX ARITY (args, num)

{

uinté64 t length = bel length (args);
if(length > num) {

return bel _mkerror(

bel _mkstring("Arity error"), bel g nil);

}
}

4. Primitive functions

The next functions implement primitive functions for the environment.

a)

(o T e Y I L

=3
~—~

(id x y)

id checks whether x and y are identical. This is stricter than equality, since
identity can only be tested for things that are always the same — namely,

characters and symbols.

Belx*
bel prim id(Bel =*args)
{

BEL_CHECK_MAX_ARITY (args, 2);

return (bel_idp (bel_car (args),

bel_car (bel_cdr (args)))
? bel g t : bel_g_nil);

}

(join x vy)
join creates a pair with x as its car and y as its cdr.

Belx
bel_prim_join(Bel xargs)

{

86

— - - - — —

CHAPTER 8. EVALUATOR 8.4. AUXILIARY FUNCTIONS

BEL_CHECK_MAX_ARITY (args, 2);
return bel_mkpair (bel_car (args),
bel_car (bel_cdr(args)));

N O v A

}

¢) (car x) and (cdr x)
car returns the first element of a pair x.

1 Belx
2 bel_prim car (Bel xargs)
3
4 BEL_CHECK_MAX_ARITY (args, 1);
5 return bel_car (bel_car(args));
6 }
cdr returns the second element of a pair x.
1 Belx
2 bel_prim_cdr (Bel xargs)
3
4 BEL_CHECK_MAX_ARITY (args, 1);
5 return bel_cdr (bel_car(args));
6 }
d) (type x)
type returns a symbol which specifies the type of x. The returning values
can be symbol, pair, char, streamor number.
1 Belx
2 bel_prim_type (Bel xargs)
3
4 BEL_CHECK_MAX_ARITY (args, 1);
5 switch (bel_car (args)->type) {
6 case BEL_SYMBOL:
7 return bel mksymbol ("symbol");
8 break;
9 case BEL_PAIR:
10 return bel_mksymbol ("pair");
11 break;
12 case BEIL_CHAR:
13 return bel_ mksymbol ("char");
14 break;
15 case BEL_ STREAM:
16 return bel_ mksymbol ("stream") ;
17 break;
18 case BEL_NUMBER:
19 return bel_ mksymbol ("number") ;

87

8.4. AUXILIARY FUNCTIONS CHAPTER 8. EVALUATOR

20 break;

21 default:

22 return bel_ mksymbol ("unknown") ;
23 break;

24 b

25}

e) (xar x y) and (xdr x y)
xar replaces the car of a pair x with the given value y.

Belx
bel _prim_xar (Bel xargs)
{
BEL_CHECK_MAX_ARITY (args, 2);
Bel xpair = bel_car (args);
Bel xval = bel_car(bel_cdr(args));
if (!'bel_pairp(pair)) {
return bel_mkerror (
bel _mkstring("~a is not a pair."),
bel_mkpair (pair, bel_g nil));

O 0 N AN U R WD =

e =
W = O
—~

pair—->pair->car = val;

—_
~

return val;

—_
W

}

xdr replaces the cdr of a pair x with the given value y.

Belx
bel _prim_ xdr (Bel xargs)
{
BEL_CHECK_MAX_ARITY (args, 2);
Bel #*pair = bel_car(args);
Bel xval = bel_car (bel_cdr(args));
if (!bel_pairp(pair)) {
return bel_mkerror (
bel_mkstring("~a is not a pair."),
bel _mkpair (pair, bel_g nil));

N=Be I e Y T S I

—_— e e
W N = O
—

pair->pair->cdr = val;
return val;

—
~

15 }

f) (sym x) and (nom x)
sym takes a Bel string and converts it into a symbol.

88

CHAPTER 8. EVALUATOR 8.4. AUXILIARY FUNCTIONS

1 Belx

2 bel_prim_sym(Bel xargs)

3

4 BEL_CHECK_MAX_ARITY (args, 1);

5 Bel xstr = bel_car(args);

6 if(!bel_stringp(str)) {

7 return bel mkerror (

8 bel_mkstring ("The object ~a must be a
— string."),

9 bel_mkpair (str, bel_g nil));

10 }

11

12 char *cstr = bel_cstring(str);

13 if(!cstr || !strcmp(cstr, "")) {

14 return bel mkerror (

15 bel_mkstring ("The object ~a is not a proper
— string."),

16 bel_mkpair(str, bel_g nil));

17 }

18

19 return bel_mksymbol (cstr);

20}

nom takes a symbol and discovers its name as a Bel string.

1 Belx

2 bel_prim nom(Bel xargs)

3

4 BEL_CHECK_MAX_ARITY (args, 1);

5 Bel xsym = bel_ car (args);

6 if (!bel_symbolp(sym)) {

7 return bel mkerror (

8 bel_mkstring("The object ~a is not a
— string."),

9 bel_mkpair (sym, bel_g nil));

10 }

11

12 return bel_mkstring(

13 bel_sym_find_name (sym)) ;

4 1}

g) (wrb x y) and (rdb x)
wrb and rdb are functions responsible for input and output on a stream.

wrb takes a bit x and a stream y, and writes that bit to the stream. If the
stream is nil, it writes instead to outs.

89

8.4. AUXILIARY FUNCTIONS CHAPTER 8. EVALUATOR

1 Belx
2 bel _prim wrb(Bel xargs)
3
4 BEL_CHECK_MAX_ARITY (args, 2);
5 Bel xx = bel_car (args);
6 Bel xy = bel_car (bel_cdr (args));
7
8 if (!bel_charp(x)) |
9 return bel_mkerror (
10 bel_mkstring ("The object ~a is not "
11 "a character."),
12 bel_mkpair(x, bel_g_nil));
13 }
14
15 if (bel _nilp(y)) |
16 y = bel_lookup(bel_g nil,
— bel_mksymbol ("outs"));

17 } else {
18 if (!'bel_streamp(y)) |
19 return bel mkerror (
20 bel _mkstring ("The object ~a must be "
21 "a stream."),
22 bel_mkpair(y, bel_g_nil));
23 }
24 }
25
26 return bel_stream_write_bit (&y—->stream, y->chr);
27}

rdb simply reads a bit from the stream x.
1 Belx
2 bel prim rdb(Bel xargs)
3 {
4 BEL_CHECK_MAX_ARITY (args, 1);
5 Bel xx = bel_car (args);
6
7 if(bel_nilp(x)) {
8 bel_lookup(bel_g_nil, bel_mksymbol ("ins"));
9 } else {
10 if (!bel_streamp(x)) {

—_
—_

return bel_mkerror (
bel_mkstring ("The object ~a must be "
"a stream."),
bel _mkpair(x, bel_g_nil));

_ =
E- VS IR S

90

CHAPTER 8. EVALUATOR

8.4. AUXILIARY FUNCTIONS

}

return bel_stream_read_bit (&x—->stream);

h) (ops x vy), (cls x) and (stat x)
ops, cls and stat are functions related to the status of a stream.

ops opens a stream to the file x, depending on the direction specified by
symbol y, which can be either in or out.

O 0 N N R W N =

24
25

26
27
28
29
30
31
32

Bel=*

bel_prim_ops (Bel xargs)

{

BEL_CHECK_MAX_ARITY (args, 2);
Bel xx = bel_car (args);
Bel xy = bel_car (bel_cdr(args));

if (!bel_stringp(x)) {
return bel_mkerror (
bel _mkstring ("The object ~a is not "
"a string."),
bel _mkpair(x, bel_g nil));

if (!bel_symbolp(y)) {
return bel_ _mkerror (
bel_mkstring ("The object ~a is not "
"a symbol."),
bel _mkpair(y, bel_g nil));

if (bel idp(y, bel _mksymbol ("in"))) {
return bel_mkstream(bel_ cstring(x),
— BEL_STREAM_READ) ;
} else if (bel_idp(y, bel_mksymbol ("out"))) {
return bel_mkstream(bel_cstring(x),
— BEL_STREAM_WRITE) ;

return bel mkerror (
bel _mkstring("The object ~a is not one of "
"the symbols “in’ and ‘out’."),
bel mkpair(y, bel_g_nil));

91

8.4. AUXILIARY FUNCTIONS CHAPTER 8. EVALUATOR

cls closes a stream x, as long as it is open. If it was closed, returns t; if it
is already closed, returns nil.

Belx

bel_prim_cls (Bel xargs)

{
BEL_CHECK_MAX_ARITY (args, 1);
Bel xstream = bel_car (args);

if (!bel_streamp (stream)) {
return bel_mkerror (
bel_mkstring ("The object ~a is not
"a stream."),
bel_mkpair (stream, bel g _nil));

O 0 N AN BN =

n

[S
A W o o= O
—~

if (stream->stream.status == BEL_STREAM CLOSED) {
return bel_g nil;

—_ = =
oIS e Y]
—~

return bel_stream_close (stream) ;

=)

}

stat takes a stream x and gives back symbols closed, in or out, de-
pending on stream status.

Belx*
bel_prim_stat (Bel xargs)
{
BEL_CHECK_MAX_ARITY (args, 1);
Bel xstream = bel car (args);
if (!bel_streamp(stream)) {
return bel mkerror (
bel _mkstring("The object ~a is not "
"a stream."),
bel_mkpair (stream, bel_g_nil));

O 0 N AN R WD =

—_— = = =
W N = O
—~

switch (stream->stream.status) ({
case BEL STREAM CLOSED: return
— bel_mksymbol ("closed");

15 case BEL_STREAM READ: return bel_mksymbol ("in");
16 case BEL_STREAM _WRITE: return bel_mksymbol ("out");
17 default: // ...wat

18 return bel_mkerror (

19 bel_mkstring("The stream ~a has an

—
~

n

92

CHAPTER 8. EVALUATOR 8.4. AUXILIARY FUNCTIONS

20 "unknown status."),
21 bel_mkpair (stream, bel_g_nil));
22 }

23}

1) (coin)

coin returns symbols t and nil at random.

1 Belx

2 bel_prim _coin(Bel =xargs)

3

4 BEL_CHECK_MAX_ARITY (args, O0);

5 return (rand() % 2) ? bel_g t : bel_g nil;

6 }

j) (sys x)
sys takes a string x and sends it to the operational system, as a console
command, and returns the command’s value as a proper Bel number.
Number types are non-standard to the Bel language, however Bel does not
specify the return value of sys, therefore we have a degree of freedom to
specify that the return of sys is a number.
This function specifically is somewhat a matter of concern, because it opens
up for the execution of an arbitrary command on the operational system.

1 Belx

2 bel_prim_sys(Bel xargs)

3

4 BEL_CHECK_MAX_ARITY (args, 1);

5

6 Bel xstr = bel_car(args);

7

8 if (!bel_stringp(str)) {

9 return bel_mkerror (

10 bel _mkstring ("The object ~a is not "

11 "a string."),

12 bel _mkpair(str, bel_g_nil));

13 }

14

15 const char xcom = bel_cstring(str);

16

17 int64_t ret = system(com);

18

19 return bel_mkinteger (ret);

20}

5. Primitive operators

93

8.4. AUXILIARY FUNCTIONS CHAPTER 8. EVALUATOR

These primitive operations take an arbitrary number of arguments and does the
desired operation across the given values.

a) Addition
Adds all given values on the list, reducing them to a single number. If not
argument is given, returns 0. If called with a single argument, it returns that
single argument (identity).

Belx
bel _prim_add(Bel xargs)
{
if (!'bel_number_list_p(args)) {
return bel mkerror (
bel _mkstring("Cannot add a non—number."),
bel _g_nil);

O 0 N AN U R W N =

—_
(=]

uint64_t length = bel_length (args);
// No args: return 0
if (length == 0) {

return bel_mkinteger (0);

S e
[« Y R S
—~

// One arg: identity
if (length == 1) {
return bel_car (args);

[T NG Y S S .
—_— O O oo
—

Bel xret = bel_car (args);
Bel *itr bel_cdr (args);
while(!bel_nilp(itr)) {
ret = bel num_add(ret, bel_car(itr));
itr = bel_cdr(itr);

NN NN N
P RO S NV
—

Il

[\
oo

return ret;
29 }

b) Subtraction

Subtracts all given values on the list, reducing them to a single number. If
no argument is given, returns zero. If called with a single argument, inverts
that argument, multiplying it by 1.

1 Belx
2 bel_ prim sub (Bel xargs)

94

CHAPTER 8. EVALUATOR 8.4. AUXILIARY FUNCTIONS

if (!bel_number_list_p(args)) {
return bel mkerror (
bel _mkstring("Cannot subtract a "
"non—-number."),
bel g_nil);

uint64_t length = bel_length(args);
// No args: return zero
if (length == 0) {

return bel_mkinteger (0);

// One arg: invert
if (length == 1) {
return bel_num_mul (bel_mkinteger(-1),
bel_car (args));

Bel xret = bel_car (args);

Bel *itr bel_cdr (args) ;

while (!bel_nilp(itr)) |
ret = bel_num_sub (ret, bel_car (itr));
itr = bel cdr(itr);

return ret;

¢) Multiplication

O 0 N A LN R W N =

—_
(=]

Multiplies all given values on the list, reducing them to a single number. If
no argument is given, returns 1. If called with a single argument, returns that
single argument (identity).

bel_prim_mul (Bel xargs)

if (!bel_number_list_p(args)) {
return bel_mkerror (
bel_mkstring ("Cannot multiply a
"non—-number."),

n

bel _g_nil);

95

8.4. AUXILIARY FUNCTIONS

CHAPTER 8. EVALUATOR

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

}

uint64_t length = bel_length (args);
// No args: return 1
if (length == 0) {

return bel_mkinteger(l);

// One arg: identity
if (length == 1) {
return bel_car (args);

Bel xret = bel_car(args);

Bel xitr = bel_cdr(args);
while(!bel_nilp(itr)) {
ret = bel_num_mul (ret, bel_car (itr));

itr = bel_cdr(itr);

return ret;

d) Division

O 00 N AN B W N =

L e T —
N N A WD~ O

Bel=*
bel_prim div (Bel xargs)

{

Divides all given arguments on the given list, reducing them to a single
number. If no argument is given, returns 1. If called with a single argument,
returns the given number.

If any division yields an error (e.g. a division by zero), returns that error
immediately.

if (!bel_number_list_p(args)) {
return bel_mkerror (
bel_mkstring ("Cannot divide a
"non-number."),

n

bel _g_nil);

uint64_t length = bel_length (args);
// No args: return 1
if (length == 0) {

return bel_mkinteger(l);

// One arg: return such number

96

CHAPTER 8. EVALUATOR

8.4. AUXILIARY FUNCTIONS

if (length == 1) {
return bel_car (args);

Bel xret = bel_car(args);
Bel *itr bel_cdr (args);
while (!bel _nilp(itr)) {
ret = bel _num_div(ret, bel_car(itr));

// If there is a division by zero
// or something, return immediately
if (bel_errorp(ret)) {

return ret;

itr = bel_cdr(itr);

return ret;

6. Other primitives

These primitives are not specified in the Bel language, but are useful.

a) (err x . rest)

err creates an error using x as a format string, and appends the rest to
the error as format arguments.

There is no arity check in err, though we do verify whether the first argu-
ment is a string. Problems with the arguments should appear when printing
the error.

O 0 N N R W N =

Belx

bel_prim_err (Bel xargs)

{

Bel xstring = bel_car (args);
if (!bel_stringp(string)) {
return bel mkerror (
bel_mkstring("First argument of ‘err™ "

"must be a string format."),
bel g_nil);

// TODO: Maybe quote?

97

O 0 N AN R WD =

[NCYRN O YN NG S NG YN NG YN N YO Sy GG G U GG ey
n A WD = O OV 0 9 A N R WD = O

8.4. AUXILIARY FUNCTIONS

13 return bel_mkerror (string, bel_cdr (args));

14}

b) (gc)
gc forces the garbage collector to perform garbage collection. Always re-
turns nil.
Belx

bel_prim_gc (Bel *args)

{
BEL_CHECK_MAX_ARITY (args, 0);
GC_gcollect () ;
return bel_g nil;

PN N S SO U S,

Bind a list of variables to values

bel_bind binds each variable to an associated value. If the binding fails at any

point, an error is returned; if not, a new environment with the bindings is returned.

Belx

bel

{

bind (Bel =xvars, Bel *vals, Bel *lenv)

int vars_ended = bel_nilp(vars);
int vals_ended = bel_nilp(vals);

if (vars_ended && !vals_ended) {
return bel_mkerror (
bel mkstring("Too few variables in "
"function application"),
bel g _nil);
} else if(!vars_ended && vals_ended) {
return bel_mkerror (
bel _mkstring ("Too few values 1in

"function application"),

n

bel g _nil);
} else if (vars_ended && vals_ended) {
return lenv;

Bel xbinding = bel_mkpair (bel_car (vars),
bel_car(vals));

return bel_bind (bel_cdr (vars),
bel_cdr (vals),

98

CHAPTER 8. EVALUATOR

26
27

CHAPTER 8. EVALUATOR

8.4. AUXILIARY FUNCTIONS

bel_mkpair (binding,

99

lenv));

AN L AW N =

1
2

CHAPTER

Reader

Our next job is to set up the reader. This section of our program is responsible for
taking a specific amount of text and turning it into an actual program structure.
For example, an expression such as. ..

(set x (x 5 5))
...should have the same effect as the following block of C code:

bel mklist (3,
bel_mksymbol ("set"),
bel_mksymbol ("x"),
bel mklist (3,
bel_mkinteger (5),
bel mkinteger (5)));

As it is true to every Lisp based on s-expressions, the parentheses determine a linked
list of objects. It is a linked list, because it is a linking of pairs. In a more concrete way,
we may express a list such as this:

(set . (x . ((* . (5 . (5 . nil))) . nil)))

Since the list is a concatenation of pairs, this also means that we can construct the
whole thing by recursion and/or iteration on the usage of bel_mkpair, and leave
bel_mklist as an internal function for when we want to write Bel lists from the C
side of things. So the list could also, in principle, be constructed by this block of code
too:

bel _mkpair (
bel_mksymbol ("set"),

101

O 0 9 AN U kAW

9.1. TOKENIZER CHAPTER 9. READER

bel_mkpair (
bel_mksymbol ("x"),
bel_mkpair (
bel _mkpair (
bel_mksymbol ("*"),
bel mkpair (
bel_mkinteger (5),
bel_mkpair (
bel_mkinteger ("5"),
bel_g_nil))),
bel_g_nil)));

This is obviously very impractical, but it gives us a hint at how our parser should
work. Every nested parentheses () indicates a pair whose car is also a pair; and for
other elements, they should be interpreted as other data objects.

9.1 Tokenizer

The first step for parsing an expression is tokenization. This is where we will split
our string into proper tokens (substrings), which will be stored as a proper Bel list of
Bel strings.

This step also determines how to use read macros, which are not explicitly supported
by Bel specification, but are useful for introducing new, different syntax. For example,
a quoted list such as

(1 2 3)
is, in fact, directly translated to
(quote (1 2 3))

In Believe, this makes it easier for us to parse these tokens later, because all we’ll
have to care about is recursively or iteratively build our lists of expressions, so any
embellishment before that should be the a responsibility of the tokenization phase.

Believe has some inspiration on Lisp dialects such as Common Lisp, therefore im-
plementing the tokenizer as a flexible stucture is a very good thing to do.

Basically, the main inspiration here is on Common Lisp’s read macros. The idea is
that one can reprogram the token reader to introduce custom syntax, not strictly bound
to s-expressions.

The best part of having read macros is that some of the reading routines could be

bootstrapped in Bel itself, so it opens the door for introducing languages built on top of
Bel.

102

O 0 N AN R W N =

[E—
- o

[« Y N S

CHAPTER 9. READER 9.1. TOKENIZER

Reserved symbols

Some characters are very basic to Lisp, so we’ll just go ahead and hardcode them.
These symbols will automatically be excluded from token reading.
The following static vector has its end signalled by the null character.

static const char Bel reserved_chars[] = {
I(!, V) I, 7"7, 7[!, ']I, O
}i
An internal predicate will help us know if a certain character is reserved. It is de-
signed to look similar to what you’ll find at ctypes . h.
int
isreserved (char c)

{

size_ t 1 = 0;
while (_Bel_reserved_chars[i] != 0) {
if (¢ == _Bel reserved_chars[i])
return 1;
i++;

}

return 0;

Read macros

The read macros themselves are exclusively programmed by using Bel, and they are
an alist. Each element is another list with three elements at most.

((\")

(\# \nul read-special-number))

As of now, read macros are still not implemented in Believe. In the future, this will
be mixed with the reserved symbols and occupy the same space, managed by a single
read table, which will be used by the rest of the tokenizer.

Bel *_Bel_rmacros;

Belx
bel init_ read_macros ()
{
_Bel rmacros =
bel_mklist (1,
bel _mklist (3,

103

10
11

O 0 9 A R W =

—_— = = e e
A WD = O

O 00 N AN R WD =

—_— = =
(S S =)

9.1.

TOKENIZER CHAPTER 9. READER

bel_mkchar('\'"),

bel_g_nil,
— bel_mksymbol ("read-special—-quote”)));
return bel g t;
}
int
isreadmacro (char c)
{
// TODO!
Bel *xitr = _Bel_rmacros;
while(!bel_nilp(itr)) {
Bel xentry = bel_car(itr);
Bel xcharac = bel_car (entry);
if (charac—->chr == c¢)

return 1;
itr = bel_cdr(itr);
}

return 0;

Token sizes

Before we begin the process of tokenization, it is important that we create a way to

count the sizes of tokens so that we can separate the token into its own string.

The next function does that until it meets a reserved character or a space character.

size_ t
token_length (const char rbuffer, size_t position)

{

size_t 1 = position,
size = 0;
while(!isreserved (buffer[i]) &&
!isspace (buffer[i]) &&
(buffer[i] != "\0")) {
size++;
i++;
}

return size;

Let’s also introduce a function for calculating token length of verbatim text. This is

useful for text which should be read in verbatim, such as strings, for example. There, we

104

O 0 N N R W N =

[—
- o

CHAPTER 9. READER 9.1. TOKENIZER

won’t be looking for spaces or reserved symbols. We’ll gobble up all characters, until
we find a character which represents the end of text (and that character will be counted
also).

However, if a null character is found, this means that the text was not properly fin-
ished. This is an error, so we’ll return a size of 0 as a warning to the tokenizer.

size_t
token_verbatim_length (const char xbuffer, size_t position, char
— end)
{
size_t 1 = position,
size = 0;
while (buffer[i] != end) {
if (buffer[i] == '"\0")
return 0;
size++;
i++;
}

return size + 1;

Finally, we create a helper function which helps us copy a certain token into a proper
Bel string.

Belx
gen_tok_string (const char xbuffer, size_t pos, size_t length)
{

char *ns = GC_MALLOC_ATOMIC((length + 1) x sizeof (char));

size_t 1i;

for(i = 0; 1 < length; i++) {

ns[i] = buffer[pos + 1i1];

}

ns[length] = '"\0';

return bel_mkstring(ns);

Tokenization

Tokenization is actually a simple process. We are going to write a procedure which
creates a list and keeps appending Bel strings to it.

There seems to be quite a lot going on here, so here’s an explanation, step by step.

Basically, this is a recursive function which builds a list of tokens. To make the
operation faster, we also keep track of the last pair added (whose car is the last added
token, and its cdr is always ni1). Therefore, to add a new token, one must only create

105

Nl I - Y B N S R

e
S O 0 N AN N kWY = O

9.1.

TOKENIZER CHAPTER 9. READER

a new pair in these molds with the relevant information, then replace the cdr of last
by the address of this new pair.

This is a similar behavior to xdr, but we’ll go ahead and do it manually.

As for the rest, it is just a case study. Characters are analyzed until we reach end of
buffer. We perform tests in these orders:

1.

Bel=*

bel_

{

Test if the character signals a read macro. Nothing is performed for now, since
nothing falls into this case for now also.

. Test if the character is ;, signalling a comment. If so, it attempts to find the next

line break. If the file ends with no line break, it is considered an error. The buffer
pointer is then repositioned after the line break.

. Test if the character is a double quote, signalling the beginning of a string literal.

If so, it attempts to find the next double quote, and encloses both double quotes
and the text inbetween to a new token. The buffer pointer is then repositioned
after the second double quote.

. Test if the character is reserved. If so, generates a token string with that same

single character. The buffer pointer is then repositioned on the next character.

. Test if the current character is not white space, indicating the beginning of a new

arbitrary token. If so, it tries to find the next white space, then gobbles all char-
acters before it into a new token. The buffer pointer is then repositioned at said
white space.

tokenize (const char xbuffer)

Bel xtokens = bel g _nil;
Bel =*last = tokens;

size t i;

for(i = 0; i1 < strlen(buffer),; i++) {
Bel xtoken = bel_g nil;
if (isreadmacro (buffer[i])) {

token = gen_tok_string(buffer, i, 1);
} else if (buffer[i] == ';") {
size_t length =
token_verbatim_length (buffer, i, '\n');
if (length == 0) {
return bel mkerror (
bel _mkstring("Unexpected EOF: "
"Comments must end on "
"line breaks"),
bel _g_nil);

106

21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52

CHAPTER 9. READER 9.2. PARSING

}
i += length;

} else if (buffer[i] == '"") {
size_t length =
token_verbatim_length (buffer, i + 1, '"");
if (length == 0) {

return bel mkerror (
bel _mkstring("Unbalanced double quote"),
bel _g_nil);
}
token = gen_tok_string(buffer, i, length + 1);
i += length;

} else if(isreserved (buffer[i])) {
token = gen_tok_string(buffer, i, 1);
} else if(!isspace (buffer[i])) {

size_t length = token_length (buffer, 1i);
token = gen_tok_string(buffer, i, length);
i += length - 1;

} else {}

if(!'bel_nilp(token)) {
if (bel_nilp(tokens)) {
tokens = bel_mkpair (token, bel g nil);
last = tokens;
} else {
last=>pair->cdr = bel_mkpair (token, bel_g_nil);
last = bel _cdr(last);

}

return tokens;

9.2 Parsing
Now we are going to work in the parser itself. Since the input is already tokenized,
all we need to do is traverse the list of tokens, and build the list structure of our program.
For an expression such as

(set x (x 5 5))

we expect to have a proper Bel list of strings, which would be printed on console
this way:

107

~N O L BN =

= Y, N U VR R

9.2. PARSING CHAPTER 9. READER

("(" "Set" "X" "(" "*" ||5" "5" ")" ")")

Every time we find an open parenthesis token " (", it indicates that we need to create
a new list, which increases the depth of our parser’s recursion, since it will be mainly
comprised of a recursive function. The close parenthesis ") " indicates that we need to
close the previous list, unless we are at recursion depth 0.

So this is basically a matter of recognizing the types of tokens and controlling the
depth of recursion. We may also find some kinds of syntax errors here.

Forward declarations

Let’s begin by declaring a few prototypes for important parsing functions. This time
we’ll be looking deeper into the tokens we split.

Bel +bel_parse_expr (Belx, uint64_t);

Bel xbel_parse_token (Belx);

Bel xbel_parse_int (const charx);

Bel xbel_parse_float (const charx);

Bel xbel_parse_frac (const charx); // implement
Bel xbel_parse_char (const charx); // implement
Bel xbel_parse_string(const charx);

We also need to declare prototypes for a few predicates, which are for the C part of
the program. These will help us turn the tokens into proper symbols of their types.

int isstrint (const charx);
int isstrfloat (const charx);

int isstrfrac (const char=x); // implement
int isstrcomplex (const charx); // implement
int isstrchar (const charx); // implement

int isstrstr (const charx);

Token list parser

Here, we are going to break a list of tokens into proper lists. At this point, everything
should already be broken into proper s-expressions.

Parsing a token list is also a case analysis, much like we did on the tokenization
phase. But this one is rather simple: we will take our string objects, convert them to C
strings, then compare for parenthesis to perform recursion depth control.

When we find an open parenthesis, we recurse on the function. The expected result
for depth > 0 is a pair comprised of the parsed sublist of Bel symbols, and the yet-
to-be-parsed rest of the list of tokens.

When we find a close parenthesis, either we build a pair with the current expression
and the rest of tokens, or we generate an error if we’re working on depth 0.

108

O 0 N AN R W N =

CHAPTER 9. READER 9.2. PARSING

As for all the other tokens, the token parsing job is dispatched tobel_parse_token,
and the subexpression is appended to the results. If the subexpression is an error, though,
we return it immediately.

Belx*

bel_parse_expr (Bel *tokens, uint64_t depth)

{
Bel xexpr = bel_g_nil;
Bel =*last bel _g_nil;
/* Move next code to its own function!!! */
/* We can deal with read macros by parsing #*/
/* the next expression with it. */
while(!bel_nilp (tokens)) {

Bel +*car = bel_car (tokens);

tokens = bel_cdr (tokens);

Bel xsubexpr = bel_g nil;

const char xcarstr = bel_cstring(car);

/* 1f((strlen(carstr) == 1) && isreadmacro (carstr[0]))
= | %/

/ * // 1. Read the next expression */

/% } else «/if(!strcmp(carstr, ")")) {

if (depth == 0) {
return bel mkerror (
bel_mkstring ("Unbalanced parentheses"),
bel g _nil);
} else {
return bel_mkpair (expr, tokens);

}

} else if (!strcmp (carstr, "(")) {
Bel xpair = bel_parse_expr (tokens, depth + 1);
subexpr = bel_ car(pair);
tokens = bel cdr(pair);
} else ({
subexpr = bel_parse_token(car);
}
if (bel_errorp (subexpr)) {

return subexpr; // Errors out

if (bel _nilp(expr)) {
expr = bel_mkpair (subexpr, bel_g_nil);
last = expr;

109

40
41
42
43
44
45
46
47

O 00 N AN R WD =

—_ = = = =
AW N = O

9.2. PARSING CHAPTER 9. READER

} else {
last->pair—->cdr =
bel_mkpair (subexpr, bel_g nil);
last = bel_cdr(last);

}

return expr;

Token parser

Parsing tokens themselves is a simple case analysis too. Here, we’re taking the to-
kens as C strings and performing direct text comparisons on them.

Predicates such as isstrnum, isstrfloat and isstrstr help detect the type
of information represented by the token. We then dispatch the text to functions of format
bel_parse_*, which will then convert the token to a proper Bel object of the given
kind.

Belx*
bel_parse_token (Bel =xtoken)
{
const char xstr = bel_cstring(token);
if (isstrint (str)) {
return bel_parse_int (str);
} else if (isstrfloat (str)) {
return bel_parse_float (str);
} else if(isstrstr(str)) {
return bel_parse_string(str);
}
// TODO: Add more special cases
return bel mksymbol (str);

1. Parsing an integer

We know that a token represents an integer if it is comprised of digits only. It may
be preceeded by a minus sign too.

1 int

2 isstrint (const char xstr)
3

4 uint64_t i = 0;

5

6 if(str[0] == "-") {

7 i++;

110

CHAPTER 9. READER 9.2. PARSING

10
11
12
13
14
15

(O N O TCR R

O 00 N AN N kAW N =

R K = = s e e e e e e e
—_— O O 00 N O N R W N = O

while (str[i] '= "\0') {
if(!isdigit(str[i]))
return 0;
i++;
}
return 1;

}

If the token represents a proper integer, then we convert it to an int64_t by
using strtoll, then we create the proper Bel number.

Bel~x
bel_parse_int (const char x*token)

{
return bel_mkinteger (strtoll (token, NULL, 10));

}

. Parsing a float value

A floating point may be syntactically preceeded by a minus, and must have a
single dot anywhere.

int
isstrfloat (const char =*str)
{

uint64_t i = 0;
int found_dot = 0;
if(str[0] == "-") {
i++;
} else if (str[0] == "'.") {
found_dot = 1;
i++;
}
while (str[i] != "\0') {
if (strf[i] == ".") {

if (! found_dot) {
found_dot = 1;
} else {
return O;
}
} else if(!isdigit (str[i])) |
return O;

111

9.2. PARSING CHAPTER 9. READER

22
23
24
25
26

AN W R WD = [O S

[O N

}
i++;
}

return found_dot;

}

If the token is a proper Bel float, we use st rt od to turn it into a double value
of C language, then create the Bel object.

Belx
bel_parse_float (const char xtoken)

{
return bel_mkfloat (strtod(token, NULL)) ;

}

. Parsing strings

Anything between a pair of " is supposed to be a string, at least initially. So what
we need to do is check for that.

int
isstrstr (const char *token)
{
return (token[0] == '""') &&
(token[strlen (token) - 1] == """);
}

Having done so, all we need to do is create a new C string, properly trimming the
token of its surrounding double quotes, then perform a proper conversion into a
Bel string. Notice that the string size is calculated taking a null terminator into
account.

Belx
bel_parse_string(const char x*token)
{
size t strsz = strlen(token);
char xstr = GC_MALLOC_ATOMIC ((strsz — 1) =*
— sizeof (char));
size_t i;

strsz——;

for(i = 0; 1 < strsz; i++) {
str[i] = token[i + 1];

}

str([strsz - 1] = '"\0';

return bel_mkstring(str);

112

CHAPTER

REPL

We will now deal with the bits of our interpreter which are responsible for the user
experience, namely the act of inputting a string which shall be evaluated by the program.

This is what we call the REPL. This is an acronym for the words "Read", "Evalu-
ate", "Print", "Loop", which as indicated, describe precisely what it does: it is mostly
comprised of a function, responsible for four high-level abstraction operations.

First, the function reads an input from console. This input is an arbitrary thing writ-
ten by the user, and is just a string of characters. Then, this string is parsed into our
proper internal structure of a list, where each element can be thought of as a valid form.

This generated list is then passed to the evaluator, which evaluates that string on an
empty lexical environment. Upon evaluation, it generates a Bel object as response for
each of the input forms on the given list, since it may contain multiple forms typed in a
row, for example.

This new list of results is then printed to the console. Each of the results on the list
is then printed on a different line.

Finally, we go back to the beginning, reading the input once again. This is what the
loop word refers to.

10.1 Reading
10.2 Evaluation
10.3 Printing
10.4 Loop

113

O 0 N AN W R~ W N =

[—
- o

CHAPTER

Debug

The following definitions are related to testing what we have so far.

11.1 Tests

String manipulation and printing

A string test which shows the conversion between C strings and Bel strings, and
vice-versa.

void
string_test ()
{

Bel xbel = bel_mkstring("Hello, Bell!");
bel_print (bel);
printf (" => %s\n", bel_cstring(bel));

bel = bel_mkstring("There is no Bel without \a");
bel_print (bel);
putchar (10) ;

List/pair/dotted list notation

The following notation tests the printing capabilities of the list printing algorithm.
Should be able to handle printing lists and dot-notation when necessary.

The data input reads as ((foo . bar) . (baz . gquux)), butthe expected
outputis ((foo . bar) baz . quux).

115

O 0 N AN AW N~

—_ =
- O

O 0 N AN AW N~

[L S = e T
0 N AN kA WD = O

11.1. TESTS CHAPTER 11. DEBUG

void
notation_test ()

{

Belx
bel = bel_mkpair (bel_mkpair (bel_mksymbol ("foo"),
bel_mksymbol ("bar")),
bel_mkpair (bel_mksymbol ("baz"),
bel_mksymbol ("quux")));

bel_print (bel);
putchar (10) ;

Proper list notation

This next test outputs the list (The quick brown fox jumps over the
lazy dog), which is a proper list of symbols.

void
list_test ()
{
Belx
bel =
bel_mklist (9,
bel_mksymbol
bel_mksymbol
bel_mksymbol ("brown"),
bel_mksymbol ("fox"),

("The™),
(
(
(
bel_mksymbol (" jumps"),
(
(
(
(

"quick"),

n

bel mksymbol ("over"),
bel_mksymbol ("the'"),

bel_mksymbol ("lazy"),
bel_mksymbol ("dog")) ;

bel_print (bel);
putchar (10);

Closure representation

This test is also a list of symbols, but with nested lists also. Plus, this is a proper list,
representing the internal representation of a closure suchas (fn (x) (* x x)),but
in its expected output form, whichis (1it clo nil (x) (» x x)).Plus, wetry
to represent another closure in its original syntax as (fn (x) (+ 1 x)).

We also take the oportunity to test bel_mk1ist by creating a proper closure not
in its literal form.

116

O 0 N AN N R WD =

CHAPTER 11. DEBUG

11.1.

TESTS

void
closure_repr_test ()
{
// (lit clo nil (x) (* x x))
Belx
bel = bel_mklist (5,
bel mksymbol ("1it"),
bel_mksymbol ("clo"),
bel_g_nil,
bel mklist (1,

bel_mksymbol ("x

bel _mklist (3,

bel_mksymbol ("x*
bel_mksymbol ("x
bel_ mksymbol ("x

bel_print (bel);
putchar (10);

// (fn (x) (+ 1 x))
bel =
bel_mklist (3, bel_mksymbol ("fn"),

bel _mklist (1, bel_mksymbol ("x
bel_mklist (3, bel_mksymbol ("+

bel_mkinteger(l),

")),

") ,
"),
"))

"))
") ,

bel_mksymbol ("x")));

bel_print (bel);
putchar (10) ;

Character list printing and environment lookup

N N R WD~

This next test prints the first ten characters in the global chars, which is a list
of pairs, each pair (¢ . d) containing a character c, and its string representation in
binary d.

It is also interesting to notice that the chars global is obtained by a lookup opera-
tion on the environment, rather than using the global variable directly.

void

character_list_test ()

{
// Character 1list
// Char: 000 (?2) => "00000000"
// Char: 001 (?) => "00000001"
// etc

117

11.1.

TESTS CHAPTER 11. DEBUG

const int first_char = 'a’;

Bel xbel = bel_env_lookup(bel_g_globe,
— bel_mksymbol ("chars"));

int i;

// Get nth cdr
for(i = 0; 1 < first_char; i++) {
bel = bel_cdr (bel);

i = Ta';
while(!bel_nilp(bel) && i < first_char + 10) {
Bel *car = bel_car (bel);
printf ("Char: %03d (%c) => ",
bel_car (car)->chr,
((Bel_char)i));
bel_print (bel_cdr (car));
putchar (10);
bel = bel_cdr(bel);
i++;

Read file bit by bit

O 00 NN N B W =

—
(=]

This test opens up the Believe C source code file as a read stream, using Bel’s stream
structure, then proceeds to read ten bytes from it (meaning that it will read 80 bits).
Every eight bit will be stored in a Bel list and then converted to a proper Bel character,
which will be displayed on screen along with its bits.

It is interesting to notice that, since the bit-reading operation itself returns characters
\ 0 or \ 1, the bit list composing a character is always a Bel string.

void
read_file_ test ()
{
// We are going to read ten bytes from Bel's
// own source code file.
Bel xfile = bel _mkstream("believe.c"”", BEL_STREAM READ) ;

if (bel_errorp(file)) {

bel _print(file);
return;

118

CHAPTER 11. DEBUG 11.1. TESTS

printf ("Stream: ");
bel_print (file);
putchar (10);

int n_bytes = 10;
while (n_bytes > 0) {
// 1 byte = 8 bits, so we make a list of
// eight characters
Bel **char_nodes = GC_MALLOC (8 * sizeof (Belx));

int i;
for(i = 0; 1 < 8; i++) {
Bel *read_char =
bel_stream read_bit (&file->stream) ;

char_nodes[i] = bel_mkpair(read_char, bel_g nil);

// Link nodes
for(i = 0; 1 < 7; i++) {

char_nodes[i]->pair->cdr = char_nodes[i + 17];

// Display on screen
bel_print (char_nodes[0]);

printf (" => ");
bel_print (
bel_char_from binary (char_nodes[0]));

putchar (10) ;

n_bytes——;

bel_stream_close (file);

Display errors

We generate a few errors and grab them, then we print these errors on screen to show

their literal structure.

void
show_errors_test ()

119

O 0 9 AN U kW

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

O 00 N AN R WD =

— =
W N = O

11.1.

TESTS

CHAPTER 11. DEBUG

Bel xerr;

// Unexisting file

err = bel mkstream ("waddawaddawadda"

bel_print (err);

putchar (10);

printf ("Is this an error? %c\n",
bel_errorp(err) 2 'y! 'n'");

// Incorrect use of car and cdr

bel_car(bel_g_t);

bel_print (err); putchar(10);

bel_cdr(bel_g t);

putchar (10);

err =

err =
bel_print (err);

/7

, BEL_STREAM_READ) ;

Incorrect generation of Bel character from binary

/* Bel #*str = bel _mkstring ("110"); x*/

/#* err = bel_char_from binary (str);
/% bel_print (err); putchar(10); */

/* Str
/#* err = bel_char_from binary (str);
/* bel_print (err); putchar(10); */

Lookup primitives

their literal form.

void
lookup_primitives_test ()

{

Bel xbel;

bel = bel_lookup(bel_g_nil,
bel_print (bel);

putchar (10) ;

bel = bel_lookup(bel_g nil,
bel_print (bel);
putchar (10);

bel = bel_lookup(bel_g nil,

120

*/

= bel_mkstring("110all01"); %/

*/

We look up a few registered primitives in the global environment, and print them in

bel_mksymbol ("car"));

bel _mksymbol ("cdr™));

bel_mksymbol ("coin"));

O 0 N N R WD =

CHAPTER 11. DEBUG

11.1. TESTS

bel_print (bel);
putchar (10);

bel = bel_lookup(bel_g nil, bel_mksymbol ("stat"));

bel_print (bel);
putchar (10);

// Undefined primitive
bel_print(bel_g nil); putchar(10);

bel = bel_lookup(bel_g nil, bel_mksymbol ("wadawada"));

bel_print (bel);
putchar (10) ;

Environment tests

The first test involves creating a temporary lexical environment, pushing a few liter-

als, assigning values, unbinding values too.

void
lexical_environment_test ()
{
Bel xlexenv = bel_g nil;
Bel =xret;

puts (" —-— Registering local “foo'");
lexenv = bel_env_push (lexenv,
bel_mksymbol ("foo"),
bel _mksymbol ("bar"));

printf ("Environment: " ;

bel_print (lexenv) ;

printf ("\nLookup: " ;

bel_print (bel_lookup (lexenv, bel_mksymbol ("foo")));

putchar (10); putchar(10);

// Assignment
puts (" —-— Assigning new value to “foo™");
ret =
bel_assign (
lexenv,
bel_mksymbol ("foo"),
bel _mkliteral (
bel_mkpair (bel_mksymbol ("baz"),

121

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

CHAPTER 11. DEBUG

printf ("Environment:
bel_print (lexenv);
printf ("\nAssignment result:
bel_print (ret);

printf ("\nLookup:

bel_print (bel_lookup (lexenv,
putchar (10);

bel_mksymbol ("foo")));
putchar (10);

// Unbinding

—-— Unbinding “foo™");
ret = bel_unbind(&lexenv, bel_mksymbol ("foo"));
printf ("Environment:
bel_print (lexenv) ;

printf ("\nUnbinding result:
bel_print (ret);

printf ("\nLookup:

bel_print (bel_lookup (lexenv,
putchar (10) ;

bel mksymbol ("foo")));

O 0 N AN B W N =

L e e
BN e Y N T

Second test is creating a global variable through assignment, creating a variable
bound to the same symbol on a lexical environment, unbinding both, then performing a
last invalid unbinding.

void
global_assignment_test ()
{
Bel xlexenv = bel_g nil;
Bel =xret;

// Global creation through assignment
puts (" -— Assigning “foo' without previous definition");
ret = bel_assign(bel_g_nil,

bel_mksymbol ("foo"),

bel_mksymbol ("bar"));

printf ("Assignment result: ");

bel_print (ret);

printf ("\nLookup: " ;

bel_print (bel_lookup(bel_g nil, bel_mksymbol ("foo")));

putchar (10); putchar(10);

122

0 N N kAW =

CHAPTER 11. DEBUG

11.1. TESTS

// Local creation of variable bound to

// same symbol

puts (" —— Shadowing global

lexenv =
bel_env_push (lexenv,

‘foo® with a local');

bel_mksymbol ("foo"),
bel_mksymbol ("quux")) ;

printf ("Environment:
bel_print (lexenv);
printf ("\nLookup:

") ;

") i

bel_print (bel_lookup (lexenv, bel_mksymbol ("foo")));
// Three unbindings
printf ("\n —-— Unbinding “foo" three times");

int i;
for(i = 0; i < 3; i++) {

ret = bel_unbind(&lexenv,

bel_mksymbol ("foo"));

printf ("\n\n After unbinding.");

printf ("\nEnvironment:
bel_print (lexenv) ;

") i

printf ("\nUnbinding result: "

bel_print (ret);
printf ("\nLookup:

") i

bel_print (bel_lookup (lexenv, bel_mksymbol ("foo")));

}
putchar (10);

Number test

This test performs raw arithmetic on the four subtypes of numbers: integers, floats,

complexes and fractions.

void
number_ test ()
{
Bel xa;
Bel «xbj;

// Integer sum
a = bel_mkinteger(4);

123

11.1. TESTS

b = bel_mkinteger (2);

bel_print (a);

printf (" + ");

bel_print (b);

printf (" = ");

bel_print (bel_num_add(a, b));
putchar (10) ;

// Float subtraction
a = bel mkfloat(4.0);
b = bel_mkfloat (3.5);

bel_print (a);

printf (" - ");
bel_print (b);
printf (" = ");

bel_print (bel_num_sub(a, b));
putchar (10);

// Fraction sum

a = bel_mkfraction(bel_mkinteger
bel_mkinteger

b = bel_mkfraction (bel_mkinteger
bel_mkinteger

bel_print(a);

printf (" + ");

bel print (b);

printf (" = ");

bel_print (bel_num_add(a, b));
putchar (10) ;

// Complex multiplication

a = bel_mkcomplex (bel_mkinteger (3),
bel _mkinteger (2));

b = bel_mkcomplex (bel_mkinteger (1)
bel_mkinteger (4)

);

bel_print (a);

124

CHAPTER 11. DEBUG

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77

O 0 N AN N R WD =

CHAPTER 11. DEBUG

11.1. TESTS

printf (" x ");

bel_print (b);

printf (" = ");

bel print (bel_num_mul (a, b));
putchar (10) ;

// Complex division

// Reusing a and b from last example

bel_print (a);

printf (" / ");

bel_print (b);

printf (" = ");

bel _print (bel_num_div(a, b));
putchar (10) ;

// Integer division (inexact)
a = bel_mkinteger(7);
b = bel_mkinteger (2);

bel_print (a);
printf (" / ");
bel_print (b);
printf (" = ");

bel_ print (bel_num_div(a, b));
putchar (10) ;

Debriefing macro

This macro is a helper for debriefing results of evaluation tests.

#define BEIL_EVAL DEBRIEF (exp, res,
{
printf ("Expression: ");
bel_print (exp); putchar(10);
res = bel_eval (exp, env);
printf ("Result: ");
bel_print (res); putchar(10);
putchar (10);
}

125

env)

O 00 N AN B W N =

W LW W W W W LW LW W W RN NN DN N NN = = e e e e e e e
O 00 9 A R WY = O 0 0NN R LD = OV YN R WD = O

11.1.

TESTS CHAPTER 11. DEBUG

Evaluator test

This test performs the evaluation of a few forms so that we can check if the evaluator

runs properly.

void

eval test ()

{

Bel *form;
Bel *result;

// (quote foo)

form = bel_mklist (2,
bel_mksymbol ("quote"),
bel_mksymbol ("foo"));

BEL_EVAL_DEBRIEF (form, result, bel_g_nil);

// (join (guote foo) (quote bar))

form =
bel _mklist (

3/

bel_mksymbol ("join"),

bel mklist (
2,
bel_mksymbol ("quote"),
bel _mksymbol ("foo")),

bel_mklist (
2,
bel _mksymbol ("quote"),
bel mksymbol ("bar")));

BEL_EVAL_DEBRIEF (form, result, bel _g_nil);

// (fn (x) (id x x))
form = bel mklist (
3,
bel_mksymbol ("fn"),
bel mklist (1, bel_mksymbol ("x")),
bel mklist (
3,
bel_mksymbol ("id"),
bel_mksymbol ("x"),
bel _mksymbol ("x")));
BEL_EVAL_DEBRIEF (form, result, bel_g nil);

126

40
41
)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

CHAPTER 11. DEBUG

11.1. TESTS

// ((fn (x) (id x x)) (quote foo))
form = bel mklist (
2,
form, // Use closure from last example
bel _mklist (2,
bel_mksymbol ("quote"),
bel_mksymbol ("foo")));
BEL_EVAL_DEBRIEF (form, result, bel_g_nil);

// (if (id (quote bar) (quote foo)) (quote

// (id (quote foo) (quote bar)) (quote
// (quote
form =
bel _mklist (
6,

bel_mksymbol ("if"),
// Clause 1
bel mklist (
3,
bel_mksymbol ("id"),
bel mklist (
2,
bel mksymbol ("quote”),
bel_mksymbol ("bar")),

bel mklist (
2,
bel_mksymbol ("quote"),
bel mksymbol ("foo"))),
bel mklist (
2,

bel_mksymbol ("quote"),
bel_mksymbol ("okay")),
// Clause 2
bel mklist (
3,
bel_mksymbol ("id"),
bel mklist (
21
bel_mksymbol ("quote"),
bel_mksymbol ("foo")),

127

okay)
okay)
nope))

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

TESTS CHAPTER 11. DEBUG

bel mklist (
2,
bel_mksymbol ("quote"),
bel_ _mksymbol ("bar"))),
bel mklist (
2/

bel_mksymbol ("quote"),
bel_mksymbol ("okay")),
// Alternative

bel mklist (
2/
bel_mksymbol ("quote"),
bel_mksymbol ("nope")));

BEL_EVAL_DEBRIEF (form, result, bel_g_nil);

// (sys "echo Hello, world!")
// NOTE: I am commenting out this test since

// this function could open some security
// holes in systems unadvertedly using it.
/* form = bel _mklist(*/

/* 2, */

/ * bel_mksymbol ("sys"), */

/ * bel_mkstring ("echo Hello, world!")); =*/

/% BEI_EVAI_DEBRIEF (form, result, bel g nil); #*/

// Eval some axioms

puts ("Evaluating some axioms");

form = bel_g_t;

BEL_EVAL_ DEBRIEF (form, result, bel_g nil);

form = bel_g_o;
BEL_EVAL_DEBRIEF (form, result, bel_g nil);

form = bel g_apply;
BEL_EVAL_ DEBRIEF (form, result, bel_g nil);

form = bel_g_nil;
BEL_EVAL_DEBRIEF (form, result, bel_g nil);

// Eval some numbers

128

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

O 0 N AN W RN =

CHAPTER 11. DEBUG

11.1. TESTS

form = bel_mkinteger (42);

BEL_EVAL_DEBRIEF (form, result, bel_g_nil);

form = bel_mkfloat (42.0);

BEL_EVAL_DEBRIEF (form, result, bel_g_nil);

form = bel_mkfraction (bel_mkinteger (2),
bel_mkinteger (3));

BEL_EVAL_DEBRIEF (form, result, bel_g_nil);

form = bel_mkcomplex (bel_mkfloat (2.0),
bel_mkfloat (3.4));

BEL_EVAL_DEBRIEF (form, result, bel_g_nil);

Arithmetic evaluation test

evaluator itself.

void
arithmetic_eval_test ()

{

Bel xexp;
Bel *result;

// (+ 2 #(c 3+71) #(f 1/3))
exp = bel_mklist (
4/
bel _mksymbol ("+"),
bel_mkinteger (2),
bel_mkcomplex (bel_mkinteger (3),
bel_mkinteger (7))
bel _mkfraction (bel_mkinteger(l),
bel_mkinteger(3)));
BEL_EVAL_DEBRIEF (exp, result, bel_g_nil);

4

// (id #(c 1+3i) #(c 1+31i))
exp = bel_mklist (
3/
bel_mksymbol ("id"),
bel_mkcomplex (bel_mkinteger(l),
bel_mkinteger(3)),

129

This next test tests the evaluation of arithmetic on some numbers, from calls to the

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

11.1. TESTS

bel_mkcomplex (bel_mkinteger (1),
bel_mkinteger(3)));
BEL_EVAL_DEBRIEF (exp, result, bel_g_nil);

// (- #(c 3-81))
exp = bel mklist (
2,
bel_mksymbol ("-"),
bel_mkcomplex (bel_mkinteger (3),
bel_mkinteger(8)));
BEL_EVAL_DEBRIEF (exp, result, bel_g_nil);

// (» 1 2 3 4°5)

exp = bel _mklist (
6/
bel_mksymbol ("
bel_mkinteger

) 14
(1),
bel _mkinteger (
bel_mkinteger (
bel_mkinteger (

(

e

4

4

*
1
2
3
4
5

);

, result, bel_g nil);

)

)

)

)
bel_mkinteger (5)
BEL_EVAL_DEBRIEF (exp

X

// (/ 45.0)
exp = bel mklist (
2/
bel_mksymbol ("/"),
bel_mkfloat (45.0));
BEL_EVAL_DEBRIEF (exp, result, bel_g_nil);

// Spec conformity tests

// (-) should return 0

exp = bel_mklist (1, bel_mksymbol ("-"));
BEL_EVAL_DEBRIEF (exp, result, bel_g_nil);

// (/) should return 1
exp = bel_mklist (1, bel_mksymbol ("/"));
BEL_EVAL_DEBRIEF (exp, result, bel_g nil);

// (/ 5) should return 5

130

CHAPTER 11. DEBUG

67
68
69
70
71
72

O 0 N B W =

0 N N AW =

CHAPTER 11. DEBUG

11.1.

TESTS

exp = bel_mklist (
2,
bel_mksymbol ("/"),
bel _mkinteger (5));

BEL_EVAL_DEBRIEF (exp, result, bel_g nil);

Arity tests

The following tests check for the arity of primitive functions. By default, a small
number of arguments is not a bug, and the missing arguments are traded for ni1l.

void
arity_test ()
{
Bel xexp;
Bel xresult;

// (id) => t

exp = bel_mklist (1, bel_mksymbol ("id"));
BEL_EVAL_DEBRIEF (exp, result, bel_g nil);

// (join) => (nil . nil)

exp = bel _mklist (1, bel_mksymbol ("join"));
BEL_EVAL_DEBRIEF (exp, result, bel_g nil);

// (type) => symbol

exp = bel_mklist (1, bel_mksymbol ("type"));
BEL_EVAL_DEBRIEF (exp, result, bel_g nil);

Dynamic binding test

This test attempts to bind the result of the division between 1 and 2 to a dynamic

variable x, then proceeds to perform an operation with it.

void
dynamic_binding_test ()
{

Bel xexp;

Bel xresult;

// (dyn x (/ 1 2)
// (+ x 1))

131

O 0 N AN R WD =

L T N T O S e Sy
N o= O 0 X NN N N R WD = O

11.1. TESTS

CHAPTER 11. DEBUG

exp = bel_mklist (
4,
bel_mksymbol ("dyn"),
bel_mksymbol ("x"),
bel mklist (
3/
bel_mksymbol ("/"),
bel_mkinteger (1)
bel_mkinteger (2)
bel mklist (
3,
bel_mksymbol ("+"),
bel_mksymbol ("x")
bel_mkinteger (1))
BEL_EVAIL_DEBRIEF (exp,

) r

n
’
) ;

result, bel_g nil);

Global binding test

This test attributes a certain closure to the symbol square globally, then proceeds

to apply this new global function to some number.

void
global_binding_test ()
{

Bel xexp;

Bel +*result;

// function definition

// (fn (x) (* x x))
exp =
bel mklist (
39

bel_mksymbol ("fn"),
bel mklist (1, bel_mksymbol ("x")),
bel mklist (
3,
bel_mksymbol ("+"),
bel_mksymbol ("x"),
bel_mksymbol ("x")));
// assignment
// (set square (fn (x)
exp = bel mklist (

(* x x)))

132

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

(oI e Y L

CHAPTER 11. DEBUG

11.1. TESTS

3!

bel_mksymbol ("set"),

bel_mksymbol ("square"),

exp); // Reuse defined function
BEL_EVAL_DEBRIEF (exp, result, bel_g nil);

// Type check
// (type square)
exp = bel _mklist (

2,
bel_mksymbol ("type"),
bel_mksymbol ("square"));

BEL_EVAL_DEBRIEF (exp, result, bel_g_nil);

// (square #(f 1/2))
exp = bel_mklist (
2/
bel_mksymbol ("square"),
bel_mkfraction (bel_mkinteger(1l),
bel _mkinteger(2)));
BEL_EVAL_DEBRIEF (exp, result, bel_g_nil);

// TODO: Unintern symbol?

Basic tokenizer test

This tests the tokenize. Basically, it will take any string expression and attempt to

generate a list of Bel strings, each string being a token.
We begin by declaring a helper macro to reduce code repetition.

#define BEI_TOKENIZE_DEBRIEF (exp, res, str)

{
exp = Sstr;
res = bel_tokenize (exp);
printf ("Expression:\n%s\nResult: ", exp);

bel_print (res);
putchar (10);
}

— e e — — —

Now we write the test. This takes the exp variable, the result variable, and a poten-

tially multiline string. Each case is a tokenization test.

void
basic_tokenizer test ()

133

O 0 9 AN U kW

[o I e Y

B W oo =

11.1. TESTS

CHAPTER 11. DEBUG

const char xexp;
Bel xresult = bel_g nil;

BEL_TOKENIZE_DEBRIEF (exp, result,

BEL_TOKENIZE_DEBRIEF (
exp, result,
"(progn (+ 1 2)\n"
" (+ 3 4))");

BEL_TOKENIZE_DEBRIEF (
exp, result,
"(def some (f xs)\n"
" (if (no xs) t\n"

n

n Hll))");

Basic parser test

This is a test for the parser. This takes the tokenizer’s output and attempts to parse

each token into a proper Bel object described by it.

We begin with a macro much like the one for the tokenizer, but here, we perform

tokenization and then parsing.

#define BEL_PARSER DEBRIEF (exp, res,

{
exp = bel_tokenize(str);
res = bel parse _expr (exp, 0);
printf ("Expression:\n" str "\nResult:
bel_print (res);
putchar(10);

}

The test itself just invokes the macro, and takes the exact same variables needed by
the tokenizer tests. Here, instead of returning a flat list of strings, we return a list of all

parsed expressions, be them lists or not.

void
parser_test ()

{

Bel xexpr;

134

"(+12)";

str)

(f (car xs)) (all f (cdr xs))\n"

")

— e - - —

© 0 N U A W N —

CHAPTER 11. DEBUG 11.1. TESTS

Bel #*result;
BEL_PARSER_DEBRIEF (expr, result, "(+ 1 2)");

BEL_PARSER_DEBRIEF (
expr, result,
"(progn (+ 1 2)\n"
" (+ 2 3))";

BEL_PARSER_DEBRIEF (
expr, result,
"(def some (f xs)\n"

" (if (no xs) t\n"
" (f (car xs)) (all f (cdr xs))\n"
" nil))");

Arbitrary input parsing

This test takes an arbitrary input from the user and parses it into proper Bel objects.
As the behavior suggests, this is extremely unsafe! But it can be used in debug
occasions. Plus, this uses fgets for user input, which has its constraints on buffer
overflow, but does not offer the same guarantees as 1ibeditline or libreadline.
When you are done, type #q to finish the parsing session.

void
arbitrary_input_parsing()
{
Bel *result;
Bel x*tokens;
char input[1024] = {0};
puts ("When you are done, type #gq to exit.");
puts ("And don't worry about flush errors.");
while (1) {
printf ("parse> ");
fgets (input, 1024, stdin);
input [strlen (input)] = "\0';

// Sorry about that :V

if (input[0] == "#' &&
input[1] == 'q")
break;

tokens = bel_tokenize (input);

135

20
21
22
23
24
25
26
27

O 00 N AN R WD =

10
11
12
13

15
16
17
18
19
20
21
22
23

11.1. TESTS CHAPTER 11. DEBUG

puts ("Tokens:");
bel_print (tokens); putchar(10);

result = bel_parse_expr (tokens, 0);
puts ("Result:");
bel_print (result); putchar(10);

Test-only REPL

This implements a test REPL which takes an input from the user and attempts to
evaluate everything that is written, and also works as an entry point where the tests can
be accessed as well, by typing the command #t.

This is supposed to test the parser and the evaluator together, those not being the
interpreter itself.

This is also very unsafe. There are a lot of checks we are not performing here, and
those are on purpose, since this is for debug and testing purposes only.

When you are done, type #q to finish the evaluation session.

void run_tests();

void
test_repl ()
{
Bel «*result;
Bel =*tokens;
char input[1024] = {0};
puts ("Enter an expression to be evaluated, or type #t for
— the test menu.");
puts ("When you are done, type #g to exit.");
while (1) {
printf ("> ");
fgets (input, 1024, stdin);
input [strlen (input)] = "\0';

// Sorry about that

if (input [0] == "#') {
if (input[l] == 'qg")
break;
else if (input[l] == 't') {
run_tests () ;
break;

136

24
25
26
27
28
29
30
31
32
33
34

CHAPTER 11. DEBUG

11.1. TESTS

tokens = bel_tokenize (input) ;
result = bel_parse_expr (tokens, 0);
if (!bel_errorp(result)) {

result = bel_eval (bel_car (result),

bel _g_nil);

}
bel_print (result); putchar(10);

137

O 0 N AN W RN =

CHAPTER

Entry point

12.1 Initialization

This is the initialization function for the Bel interpreter. Once this function is called,
the Bel system is ready to be used.

Belx

bel _init (void)

{
// Initialize garbage collector
GC_INIT();

// Initialize random number generation
// Warning: This is a VERY naive approach
srand (time (NULL)) ;

// Initialize symbol table
bel sym_table_init ();

// Axioms

bel init_ax_vars|();
bel_init_ax_chars();

bel init_streams () ;
bel_init_ax_env () ;
bel_init_ax_ primitives();

// Read macros
bel_init_read_macros();

139

24
25
26

O 00 N AN W R WD =

LW L W W NN NN N NN = e e e s s e e
W NP = O 0V 00 NN R WD = O 0V 0NN NN REWND—= O

12.2. TESTS CHAPTER 12. ENTRY POINT

// TODO: Return an environment?
return bel_g nil;

12.2 Tests

This is the entry point for tests. All running tests are to be put here.
We also make sure that these tests are run as a menu, so that only the desired test is
shown when needed.

void
run_tests ()

{
int opt;

do {

puts ("-- Believe test menu\n”

" Choose a test to run:\n"

String test\n"
Notation test\n"
List test\n"
Closure representation test\n"
Character List & Lookup test\n"
Read five bytes from Believe's source\n"
Show a few errors on screen\n"

n

SSEEN NG N C; TN CUR A

Lookup a few primitives and print them\n"

n

Lo

Lexical environment test\n"
"10. Globals and assignment tests\n"
"11. Number arithmetic tests\n"

"12. Evaluator test\n"

"13. Arithmetic evaluation test\n"
"14. Primitive arity test\n"

"15. Dynamic binding test\n"

"l16. Global binding test\n"

"17. Basic tokenizer test\n"

"18. Parser test\n"

"19. Arbitrary input parser (unsafe!)\n"
"20. Go back to REPL\n"

" 0. Exit menu'");

printf ("Option >> ");
scanf ("%d", &opt);

140

34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[S

CHAPTER 12. ENTRY POINT

12.3. MAIN FUNCTION

// flush here

putchar (10) ;
switch (opt) {

default: puts("Invalid option.");
case 0: Dbreak;
case 1: string test();
case 2: notation_test();
case 3: list_test();
case 4: closure_repr_test();
case b5: character_list_test();
case 6: read_file_test();
case 7: show_errors_test();
case 8: lookup_primitives_test();
case 9: lexical_environment_test ();
case 10: global_assignment_test ();
case 11: number_test ();
case 12: eval_test ();
case 13: arithmetic_eval_test();
case 14: arity_test();
case 15: dynamic_binding_test ();
case 16: global_binding test();
case 17: basic_tokenizer_test();
case 18: parser_test();
case 19: arbitrary_input_parsing();
case 20:

test_repl();

opt = 0;

break;

}
} while (opt

= 0);

12.3 main function

break;

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;

This is the program entry point. It is supposed to only print the ribbon, initialize Bel
and perform some tests, for now.

int
main (void)

{

printf ("Believe %s (built %s)\n",
BELIEVE_VERSION,

141

O 0 3

10
11
12
13
14

16

12.3. MAIN FUNCTION

CHAPTER 12. ENTRY POINT

BELIEVE_BUILD_TIME) ;

printf ("A Bel Lisp interpreter\n");
printf ("Copyright (c) $%s\n", BELIEVE_COPYRIGHT) ;
printf ("This software is distributed under the %s

— license.\n",
BELIEVE_LICENSE) ;

bel_init ();
test_repl();

return O;

142

	Contents
	Acknowledgements
	Introduction
	About literate programming
	Licensing
	Textbook license
	Code license

	Contribution guidelines
	Code contribution guidelines
	Project communication guidelines

	Backlog
	Roadmap
	On-the-fly checklist

	Tools and scripts
	Makefile
	Memory leak testing
	Tangling
	Running the program

	Libraries and headers
	File header
	Software-related definitions
	Default headers
	Boehm-Demers-Weiser Garbage Collector

	Fundamental data types
	Enumerating Bel types
	Pair
	Character
	Symbol
	Stream
	Number
	The Bel structure

	Essential structures and manipulation of data
	Basic definitions
	Forward declarations

	Predicates
	symbolp
	nilp
	pairp
	atomp
	charp
	streamp
	numberp
	idp
	errorp
	proper-list-p
	stringp
	literalp
	primitivep
	closurep
	quotep
	number-list-p

	Symbol Table and Symbols
	Pairs
	Characters and Strings
	Streams
	Stream manipulation safety

	Numbers
	Number generation
	Number arithmetic

	Errors

	Axioms
	Variables and constants
	List of all characters
	Environment
	Types and hierarchy of environments
	Environment extension and capturing

	Literals
	Primitives
	Closures

	Printing
	Forward declarations
	Printing pairs
	Printing functions

	Printing strings
	Printing streams
	Printing numbers
	Generic printing

	Evaluator
	Forward declarations
	The eval function
	The apply function
	Auxiliary functions
	Evaluating special forms
	Evaluate a list of values
	Apply a primitive operator to a list
	Bind a list of variables to values

	Reader
	Tokenizer
	Reserved symbols
	Read macros
	Token sizes
	Tokenization

	Parsing
	Forward declarations
	Token list parser
	Token parser

	REPL
	Reading
	Evaluation
	Printing
	Loop

	Debug
	Tests
	String manipulation and printing
	List/pair/dotted list notation
	Proper list notation
	Closure representation
	Character list printing and environment lookup
	Read file bit by bit
	Display errors
	Lookup primitives
	Environment tests
	Number test
	Debriefing macro
	Evaluator test
	Arithmetic evaluation test
	Arity tests
	Dynamic binding test
	Global binding test
	Basic tokenizer test
	Basic parser test
	Arbitrary input parsing
	Test-only REPL

	Entry point
	Initialization
	Tests
	main function

